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Introduction

Magnetic resonance is normally very much broadened if a ferrimagnetic

sample is immersed in a spatially non-uniform field. Experimentalists measur-

ing fundamental resonance parameters take great pains therefore to employ

ellipsoidal sample shapes (usually small spheres) that are positioned in fields

of very high uniformity. Because surface roughness is known to cause scatter-

ing from the uniform mode to degenerate spinwaves of short wavelengths, there-

by increasing the resonance linewidth, additional effort is expended in polish-

ing the surfaces to optical tolerances.

Commercial manufacturers of tunable microwave, yttrium iron garnets (YIG)

filters avail themselves of this knowledge and employ uniformly magnetized,

highly polished spherical single crystals in their designs.

From this perspective it is therefore remarkable that we at MIT observed

extremely sharp resonances of a very localized character in single crystal YIG

slabs and films that encounter highly uniform bias fields. On the other hand,

it has been known for some time that magnetoelastic waves can be highly focussed

by, and propagate with low loss in, steep magnetic field gradients. One view of

the high Q resonance is that magnetostatic mode patterns are formed for which

the resonant energies are highly confined to certain regions or "tracks" within

the crystal that allow wave propagation around them. If the mode amplitudes

are very small at the edges and corners of the sample, the surface scattering

(which one would expect to be enormous) is largely prevented; consequently the Q

of the resonance is governed primarily by the intrinsic linewidth of the bulk

crystal together with normal circuit loading considerations. In effect,

appropriately designed magnetic field profiles create surfaces of discontinuity

where there are no actual surfaces; surface wave propagation at such "surfaces"

should be free of many of the drawbacks and loss mechanisms encountered at true

surfaces. It has been our intent to learn how to characterize, control and

efficiently couple to such modes so that one can create a new class of microwave

magnetically-tunable resonance filters.

Our research goals concerned Magnetoelastic Delay Line and Magnetostatic

Mode/Wave Synthesis; we separately enumerate our results for each of these two

major topics.
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Synthesized Magnetoelastic Delay Lines

Time Prism Filters

The basis for the research program in magnetoelasticdelay line synthesis

that was undertaken for the Air Force by the MIT Microwave and Quantum Magnetics

Group under Contract F19623-79-C-0047 is contained, in the following paper that

is included for completeness.

The dc field synthesis techniques were developed at M.I.T. by the principal

investigator and culminated in U.S. Patent # 4,093,929 dated June 6, 1978.

The linearly dispersive delay lines (Time Prism Filters) cited were fabricat-

ed and measured by Dr. A. Platzker at Chu Associates, Littleton, Massachusetts

who was then a concurrent member of the Microwave and Quantum Magnetics Group.

Field Gradient control of spatially localized magnetostatic resonances is

covered by U.S. Patent 4,152,676, May 1, 1979 (Morgenthaler and Zeskind).
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MAGNETIC FIELD SYNTHESIS PROCEDURES
FOR MAGNETOSTATIC AND MANETOELASTIC DEVICES*

F.R. Morgenthaler and A. Platzker

Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge Mass. 02139 and

Chu Associates, Littleton, Mass. 01460

neglecting crystalline anisotropy, the dc H-field
ABSTRACT is both curl free and parallel to the magnetiza-

Certain types of magnetostatic and/or magneto- tion vector, R. If the latter is assumed locally
elastic devices require nonuniform dc bias fields saturated to a uniform value N, it follows in terms
of sufficient strength to locally saturate the of the scalar magnetic potential
active ferrite element, that (I)

We here review a synthesis procedure for cy- and
lindrically symmetric geometries that allows pre- R (2)
specification of the field either on the symmetry The final constraint is 7- C1H+M) 0 0, there-
axis or on a plane perpendicular to it. fore 0

The method is then applied to the cases of 0 (3)
both a thin film disk magnetized normally to its
plane and microwave magnetoelastic delay line Although this equation can be solved numeric-
designed for linear frequency dispersion over ally subject to any set of boundary conditions
wide bandwidths, that force a unique solution, the analysis of such

Finally, we report construction details and a boundary value problem is often tedious. More-
test data on an actual packaged device having over, and of greater importance, the H-field, when
greatly improved characteristics. Measured para- found, may not be that which is desired. Then,
meters for two-port operation at S-band over a the boundaries must be modified, the field recom-
I GHz. bandwidth include a linear dispersion fac- puted and so on in an iterative "cut and try" man-
tor D-.3 nsec/MHz. and an insertion loss (untuned) ner. It would appear to be much more difficult to
of 27-30 Db. carry out field synthesis rather than analysis.

However, the synthesis of a desired field is actu-
ally a much simpler problem.

In essence, the procedure starts by assuming
INTRODUCTION the specified field to exist along an axis or

Although many magnetic resonance devices ideal- plane of symetry for which the direction of M
ly operate with a dc magnetic field bias that is can be deduced. The potential - is then expanded
spatially uniform, there are a number of magneto- in an appropriate series within the magnetic re-
static and magnetoelastic wave devices that either gion. This portion of the synthesis is termed the
require or benefit from nonuniform dc fields. Al- "inner"-field determination and Is carried out
though the equations governing the dc magnetic without regard to the boundaries'of the magnetic
field within a locally saturated ferrimagnet are material. The next stage of the procedure involves
well known and can be solved numerically for any expanding, in a convenient series, the Laplacian
set of boundary conditions that force uniqueness, potential in the nonmagnetic region outside of
the solution when found may not be the field re- some assumed boundary surface. The coefficients
quired for proper device operation. Fort nately, of the "outer"-field potential are next matched to
a synthesis procedure has been formulated that al- those of the "inner"-field so as to satisfy, in a
lows one to specify the desired field along axes or least-squares sense, the proper boundary-conditions.
planes of symmetry and then work outward to find, Finally, we design high-permeability pole-
first, the entire field within the magnetic mater- pieces or current sheets that when suitably ener-
ial, second, appropriate high permeability pole gized will create the outer and hence also the in-
pieces or current windings capable of sustaining ner field.
that field. AN OVERVIEW OF THE SYNTHESIS PROCEtURE

We first describe the synthesis procedure and Although more general situations also can be
show how to produce prescribed nonuniform radially treated by similar methods, we here restrict our
symetric dc fields in a normally magnetized thin discussion to cylindrically symmetric, fields when
film. We then apply the method to high perfor- the material shape is a cylinder or disk. There
manct magnetoelastic linearly dispersive delay are then two cases of particular interest. They
lines that employ cylindrical crystals of yttrium result from specification of the R-field along
iron garnet (YIG). either the axis of syrametry H (o,z) or an appro-
BASIC EQUATIONS z

Within a current free magnetic material, and priate plane perpendicular to that axis (H z(r,zo)).
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The synthesis procedure can be divided into the where the primes denote differentiation with res-

following steps: pect to z and s-0, 1,2,3,... In addition, b; I

1. Find the H-field that meets the on-axis or on- and ooa' >C. In order to ensure local saturation,
plane field requirement inside of the cylinder a' is 0

of length L and radius R for specified magne- o

tization M. the interval; we take a'>0 and b -1 without loss
2. Choose a convenient series expansion for the 0 0

Laplacian scalar potential outside of the c cf generality. Eqs. (6) yield, for each value ofsapbad b inalterotsnofathetslower torder

linder and match boundary conditions over the s:bsiI, as,2 and bs+2 in terms of the lower order

entire surface. Solve for the coefficients of a and b coefficients and their derivatives. There-
the outer potential. It may prove useful to fore one starts with s-0 and proceeds upwards to
subdivide the outer region and carry outa se- generate as many terms as are needed. For s-0
parate a match for each subregion.

3. Plot the equipotentials of the outer field and b- - a"/2(a'+M ) (7a)
choose two (or more) that are appropriate to

serve as surface contours of high permeability a2- aobj/2 (,b)
magnetic pole pieces. If subdivision of the
outer region has been utilized, pole pieces b 2 (7c)

must in general touch the material at the divi- 2- 1 /2

sion points so as to isolate the various outer Provided a'(z) is either specified or can be de-
subregions. 0

4. Alternatively, if a solenoid is to be used to duced, the various functions a2n constitute the
generate the field without benefit of magnetic desired solution of Eq. (3). The number of terms
pole pieces, the field outside of the winding required to satisfactorily approximate the field
surface must be chosen with continuous normal depends upon the extent of r, the value of M and
flux and vanish as r-- . The discontinuity in the particular function a'.
the tangential field then determines the sur- 0

face electric current density and hence wind- If the material has uniaxial magnetic anis-
log design. tropy oriented along the z-axis, the procedure can

5. If a satisfactory design does not result from be generalized by replacing in Eq. (6a)
the synthesis procedure, one can alter the as- 2K
sted material boundary surface and/or the a - 0

b 2.
"outer"-field expansion and try again. n 2 b

It is important to realize that although where K is the uniaxial anisotropy constant.
an infinite number of combinations of material o
size, shape and pole piece designs exist, all (K o< easy axis; K >0 easy plane). If the anis-
of which would create the desired field, once o

trop7 is not uniaxial with respect to the z-axis,
one has been chosen the field it creates is (as fur example a cubic material with [100] or
'ique.l [ill] orientation) the formulation may still be

INNER FIELD used by replacing K with an appropriate effective
Because symmetry dictates that both H (o,z) 0

r value provided the radial component of M is not
and Mr (o,z) must vanish, and the axis (r-0) is as- .oo large. If M /M is large, the field is, of

r~r z
sumed nonsingular, an appropriate expansion of the course, not strictly cylindrically symmetric.
potential within the magnetic material is The expansion of Eq. (4) is very helpful when

S ao (r) r2n  the on-axis field is what is specified because
(4) then a'(z) is known. On the other hand, if

fne could substitute Eq. (4) into Eq. (3) and ex-
pand the result so as to find a2 in terms of a°  Cz(r,zo ) Is specified, an alternate approach is pre-

and its derivatives and so on. However, it ferable. In this case we expand , as

more convenient to separately expand R as ao(r)+a(r)(z-z)+a 2 (r)(ZZ0) 2+. . . (8)

M ZM n 2obzz)r 2n+1 b2n+l (z)r 2n+  (5) with a,(r)-H (r,z ) and assurance that a'(O)-O
zn0r n-0 z 0.

and require 1M- - M, RxH - 0, and 'B - 0. The for all n.

result is three sets of constraints, respectively T!E OUTER FREE SPACE POTENTIAL
s If the z-axis passes through an outer^ field

18'2. b [2( -n) -2(s+--n)a bn)b, n 0 (6a) sul region, the Laplacian outer-potential * forthat subregion may be taken nonsingular over all

s[b - z and expanded in the form
,[2n+l 2(-r.)+l +b2n b2(9+1-n) 0~(, 2(s+1) -0 (6b) ~ () r ___5-0 o1() ao( r'di a ° + .

4(s9 l) 2 a + 2(s+ )Mb a "2sIM 0 (6c)(+ 29

2s~- 2 s 0 (6)sin. Naturally, if a is taken to be (cos) (kz) or

iOn) (kz) i factors into the product of a
0
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and either I (kr) or J. O). However, the usual the radial match at r-R and the and match at z-0

cylinder functions are not especially convenient or xL epi-ately.

because our boundary specification does not lead Radial Match

readily to irdentification of ailenvalues of k. We wish to expand R (z,) and (H 'M )Cz,R) in

For 2as
n , Sq. (9) generaces the eec of poly- power series for

nouma ?*(rs) that satiafy the recurrence formla M-1

n n n- Z; n Ila)*,.

n' "*, 2 a nd N-i Cb

2 2 n/2 (H r +M r)(z,R) 0 e6B(z/L)n 1b

With ?*.IN it follows that P*mt~r +2) nItCoa0t
0 0 n n where N is the number of terms that will produce

where tane r/z and P nIs tha associated LoSondre a olerable error. Although a and kc ould be

function of degree n and order zero. found from matching terms of a Taylor series, we

Tor subregions of the outer field that do not often find it preferable to calculate them from

contain the z-axis, solutions with a logarith ic a least squaree fit, using the inverse Hilbert

singularity at r-O are often helpful. In such Matrix of order N.

cals•, we employ the not of polynomials Q*(r,z) In terms of a nd t the coeff!cients C and

that satisfy the recurrence formula C' are then found to satisfy

-n- n-l (~2 2 b P-P 0 /P - (Ln.+l)C' (12A)

with + (1 + t9) N-p 2k

It is also parmissable and often advantageous k-1 Apkk 7rk k C+(

to utilize in the expansion axial nultipoles of N

the form N92k
C'- /Lp - Z .... 2k[C _(12b

S2((z )/[(Z-So)2+r2 3/2)  n ,1,2, p k-

as long as their locations r-0, zat o are anywhere k p+k +

thin the mterial boundary. Notice that for a given value of n, C and C' do-

-ihntemtra onay 
n n

W plan to use iron pole pieces to energize &1l pond only on the values of C and C' with p>n.

of the synthesized fields described in this paper, 
P p

therfort the behaviour of the polynomials at large Therefore, since by design C"-0, Eq. O12a) !rnedla-

distance from the origin is no deterrent to ex- tely yields CN. Thereafter, alternating between

panding 0,in any outer region as Eq@. (12b) and (12a) for successively decreasing

N N-I values of p. produces an unravelling that calcu-

=C + I C P* + E C'Q* latee in order C; C.1, C. 2, C 2; Co
0 nli n n n-0 n n ltsi rrI;Cql s-.C42 ;

or what in exactly equivalent,if c'-0 The value of C0 is immaterial and can be set to

s n*/2 any convenient value including zero.

;ON Zo k. [C+Cng(lnr.k,) )Az.ft
2k r2k (l0b) End vatch

In a like manner, the outer potentials for

wher k Ut z'0 or s)L can be expanded as

and l (n'2U)1(k k end 2 n2 C zAn 2kr2k z (13a)

1'and k0 od . 'nk
S nnd-2k 2k

1-(l + 1/2+1/3+ ...,l/k) kl nd i JO CAk (z-L)' r zL (13b)

and n* is the even integer n or n-1. For the z-0 and face, matching 'and +M gives

3CUNDAI CONDITIONS a~ (C)ev
Because the sample shape is here restricted to f - n %Von

be a right circular cylinder (or disk) of radius R An,n (14)
and length L, it is beneficial to subdivide the 

1

outer region at the cornars and carry out three n a (0)
separate expansion# for t, Those for s4O and C -n. n add

S>L cannot contain Q* functions. A
tcm the "inner" field synthesis we know R

and I everywhere within the cylinder. We consider
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where aa and b satisfy Zoo. (6). Similar oqua- to realize such devices but their success was very

tions result for the zL and ce. limited. The difficulty lies in the fact that the

An an example, assume that the on-axis field required field profile is not achievable in simple

in a cylinder of radius Ral.5m and length L-5m YZQ geometries Immersed in a uniform bias magne-

is required t b tic field. Zn contrast, we have previously ropor-

Seu 300 + 300z 0. ted 5 success in synthesizing laboratory delay lkies
e,) - 0 0and wish hare to report our further progress.

First, we review the underlying physical prin-
when the saturation magnetization expressed in ciples of magnotoelastic delay lines and emphasize
gaus is 41.N - 1780G. the areas of importance for improved device opera-

A plot of both equipotentiala that pass chro~gh tion which require further understanding. Next,
the corner (r-R, a-0) of the cylinder determines we give design parameters. Third, and last, we
a region that can be made the same potential by supply details of device constrution and report
forming it of high permeability iron. The aan- salued caractrisices.
nor in which the outer-field is subdivided by the
pole-piece that touches the r-R, z-0 adge is DEVICE PHYSICS

shown in Fig. 1. Of course, this technique is :n came@ where the internal nagentic field
not feasible should the end match equipotential lis varies slowly enough, spatially, an expansion of
below that of the radial-match potential, the r1 fields and magnetization in terms of plane

waves is still possible. However, the propagation
constant k associated with the wave plcket then
varies with position. At each internal point z
of the single crystal YIG rod, the frequency of

Air the a-directed magnetic spin waves is given by

Fe W/n * °  H(z) + A/k2 + Dk2  (1B)

where R(z) is the internal magnetic field, y is
the gyronagnetic ratio, and A,D are constants ap-

Air propriate o the materl . The aboey relation isa simplification only. Zn reality there is a

multitide of modea inversely proportional to k, as

Fe shown in Pig. 2a. Also shown In the figure is the
Te w/k relation of the shear elastic wave which is

coupled to the spin waves. This coupling gives
R. rise to the splitting at the crossover point; i.e.

YIG the point where the unperturbed frequency values

im -ere equal. The longitudinal elastic wave is not
0 Limportant to the delay line operation and is there-

pig. 1 Pole pieces that syntnssize a fore omitted from the figure. In2 th region of
linear field profile on the axts of a small k, the dominant term is A/k and the group
YIG cylinder, velocity v$-h/k is negative. The wave in this

SYWIHESIS OF Ez(r) 1M A VERY THIN DISK region is called a backward magnatostatic wave

In order to normally magnetize a very thin disk (BMW). In the high k region the group velocity

of magnetization H so as to produce, within it, a is positive and the wave there is termed exchange
prescribed field R,(r), it is necessary to first spin wave (SW).

ad To understand the operation of the single end-
xpand i in the form ed delay line, we follow the path of a particu-

t r2n (15) lar wave packet of frequency _ inside the magne-
31 (r<R) Otic medium as shown in Fig. 2b. The path of the

If the film is located at the plane x-O and the wave starts very near the face of the rod (point
outer-potential is expanded as A in Fig. 2b) in the form of a very low k, back-

ward magnetic wave. This wave is generated by an
n O C2,+1 Pn+l(rz) (16) electromagnetic signal applied to an antenna plac-

the boundary conditions can be mat~ched (neglecting ed in close proximity to the face of the rod. As
thenboundary condiiovcanibedated (negld the wave packet rapidly penetrates into the rod
fringing at the rim) provided Cl-% + H and it encounters a monotonically increasing magnetic

(-)'nl, 4n field. The initial group (or energy) velocity is
C2n+10 (2 a l)t 2n nl(17) very high but decreall rapidly until k reaches

the value kT - (A/D) where the velocity is

SYrHESZZZD LINEARLY DISPERSIVE MAGNETOELASTIC zero. This point termed the turning point is
DELAY LI'$S the point of furthest penetration of the wave into

We have used the synthesis procedure outlined the rod (point 3 in Fig. 2b). A schematic repre-

above to design and build a special class of nag- sentation of the group velocity vs. time is shown

necoelastic delay lines, namely, linearly disper- in Fig. 2c. The time spent in the BMW region is

sive delay lines Y11h wide instantaneous bandwidth, very short, on the order of a few nanoseconds and
Several attemts have been made in the past will henceforth be neglected in the calculation of
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the total delay time. unaffected by the magnetic field towards the face
This omission should not be construed as an in- of the rod where it undergoes a reflection in the

dication that the BMW region is of little impor- highly polished surface (point D in Fig. 2b). Fro
tance in the operation of the delay line. On the this point the wave packet retraces its former
contrary, this region where the wave packet initi- steps through the SW and BMW regions and is picked
ally forms is of crucial importance to efficient up at the surface in the form of an electromagne-
delay line operation. Unfortunately, the com- tic wave. This may be done by the same antenna
plicated processes associated with the formation used to launch the input signal, or by another
and propagation of the wave in this region are antenna placed in close proximity to it when two
understood only qualitatively and in scant detail, port operation is desired. The delayed signal
If the magnetic field gradient is comparatively whose rather complex trajectory we have Just fin-
small 6 at the turning point, k will suffer no ished describing, is the main output of the delay
discontinuity and its magnitude will continue to line, the so called ist echo. Not all the wave
increase. Except for a small reflection, the energy, however, is extracted by the receiving an-
bulk of the energy continues along a path of in- tenna and the unextracted portion is launched back
creasing (k) into the exchange spin wave region. into the crystal to arrive back at the rod face

The wave trajectory is now toward the front as a 2nd echo. This spurious signal is delayed by
face of the rod in the direction of decreasing twice the delay of the 1st echo and is of reduced
magnetic field. In this SW region, it is neces- amplitude. Higher-order echoes exist as well at
sary to consider both the radial and axial compo- further reduced amplitudes.
nents of the magnetic field. Certain radial dis- When two port operation of the single ended
tributions tend to bend the wave away from the delay line is required, the direct electromagne-
axis, that is defocus the coherent energy beam tic feed the rough between the input and output
while other profiles tend to focus it toward the antennae which are at close proximity causes an-
axis. It is very important to ensure the exis- other spurious output signal. This sometimes
tance of focussing conditions since very high propa- bothersome spurious whose high amplitude had been
gation losses occur otherwise. Too much focussing, reported, 5 could be reduced substantially by im-
on the other hand, is counterproductive since it proving the wave coupling antennae.
saturates the propagation channel by creating loc- The total transit time of the 1st echo is the
al regions of extremely small cross-section and this sum of the times spent as an exchange spin wave
of high energy density. This tendency to premature and as an elastic shear wave. This is given by
saturation limits the power handling capabilities Zx
of the delay line and hence its useful dynamic 2z ( d (19)
range. T - + 2 Z

The determination of whether a focussing or a v v

defocussing condition exists may be made by evalua- 
zx

ting a dimentionless quantity Q that is a function
of the H-field and its first and second spatial der- where zT, zx are the positions of the turning poit
ivatives, evaluated at the axial point z under con- and the cross-over points respectively, v is the
sideration 6 . A concave field profile (H"<O) auto- velocity of the elastic shear wave, and vg= /ak
matically ensures focussing but a slightly convex
profile is also allowed, is the group velocity. In the above expression

Provided a focussing condition exists, the beam for evaluating T we neglect the transit times
propagates to the left until k reaches the value through the BMW avd the cross over reqions.
kx- /v, where v is the velocity of the elastic We therefore assume w/yH(z)+D exk, and by

shear wave. This is defined as the cross-over expanding H(z) in a Taylor series around zx, ob-
point where the unperturbed frequencies of the elas- tain the approximate expression for T
tic and spin waves are equal (point C in Fig.2b). 2z
The distance between the turning point and the 2x 20
cross over point traversed in this region is very v v tan (20)

small, but the wave on the other hand is a slow one
with its maximum velocity reached at the cross over where 8- ,j20 -3"/vH' is a dimensionless para-
point. As a result, the time spent in the SW re- ex

gion accounts for a major portion of the total de- meter, H', H" are the first and second spatial dri-
lay time (more than half in the case of a linearly vatives of the axial magnetic field evaluated at

varying field profile). Representative values of xhe cross over point zx, and Dex is the exchange

the distance and velocity for YIG at 4 GHz and a constant. for YIG. when converted to CCS units,
magnetic field gradient of 104 Oe/cm are 20mm for D - Sxl0-9 Oe cm2 , v - 3.84x105 cm/mc and
the distance and 1.15xl04 cm/sec for the maximum ex

y-2.8MHz/Oe; In evaluating T in the above equa-velocity. This velocity is only 3% of the shear tion, we-assumed k.=O and k -'./v.
elastic wave velocity. Equation (20)- for T, x

The coupling between the spin wave and the can be used to com-
elastic wave causes a substantial conversion of the pute the delay time for a given field profile or
spin wave packet into an elastic shear wave at the Alternatively to synthesize the necessary profile

for achieving a desired delay characteristic. in
cross-over point. Under the same stipulations as the latter case, T(w) is a given function of fre-
before, namely that the field gradient is not too quency. When a field synthesis is attempted, a
steep, very high conversion efficiencies are pos- word of caution is appropriate. For a specified
sible. The elastic wave continues to propagate
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T(w), the synthesized field profile may turn out to is therefore defined as the :,w over which the only
be physically unrealizable or if physically possible, delayed output present is the 1st echo. This band-
might turn out to be a defocusing profile, render- width increases upon increasing the frequency (an
ing it impractical. For ejample, the profile pro- octave being the theoretical maximum) and a IGHz
posed for a constant delay is a highly defocus- or more at s band was set as a goal. Device opera-
ing one. tion in the frequency range of .5-5GHz has been

In the limits of Dex.-8 0 we obtain from Eq. (20) verified with 5GHz being a laboratory inatrumenta-
the position z as tion limitation. We belive that useful operation

x U YH at C and possibly x bands in feasible with instan-

1 T(w)dw + c (21) taneous bandwidthexceeding 2GHz.
I o1-YH Input/Output isolation1

0 Since the nondispersive electromagnetic leak-
where C is an integration constant whose value way age appears instantly at the output, a high ampli-
we cs an i io ctude may be tolerable for certain applications.be chosen at will. Frsm motn plctohwvr hsi

The field profile as a function of position z For some important applications, however, this is

along the axis of the rod can be found by invert- not so. Although it may seem that due to the
ing the ao expresion e fo.When hyiherac- close proximity of the input and output antennae,
ing the above expression for z1 . When higher ac- high isolation could not be achieved, our design

curacy of the prescribed delay characteristics over goal was to limit the leakage to a level at which
wide instantaneous bandwidth is required, a better its amplitude is no higher than the amplitude of
determination of the field profile may be warrarted. the Ist echo signal.

An important delay characteristics is a linear Dynamic ranse
dispersion where the dealy time increases linearly Our delay line is a magnetic device and like
with frequency. In this case T-T0 +w . By solving all such devices, its behavior changes drastically

Eq. (21), and when GO is chosen, the required sdal when high power rf signals are present. These
field profile is a linear one, given by high power effects limit the dynamic range for use-

2T ful operation. Since high energy densities are the
H - o + 4z (22) culprits an obvious way to increase the dynamic

YD YvD range is to increase the effective cross sectional

The linear dispersion coefficient D, is therefore area of the signal. This may be accomplished by
given by D-4/U YvH' whre H' is the field gradient. optimizing the coupling to the BMW and/or by
When C O is chosen, the resulting profile is non- decreasing the amount of focussing of the signal
linear. while it traverses the exchange spin wave region.

As large a dynamic range as possible is obviously
DESIGN PARAMETERS desirable for many applications. For our ealier

The most important operational parameters in work we achieved ranges of 25-30db, and any im-
this class of devices together with our design goas provement was deemed welcome.
are listed below: DEVICE CONSTRUCTION AND MEASURED CHARACTERIST:CS
Insertion loss and flatness na

For the device to be of practical use, it should An exploded view of a packaged device is
have no more than a moderate amount of insertion shown in Fig. 3.71 Notice the position of the YIG
haven mre analmrateon of inch losserto arod between the synthesized soft iron pole pieces.
los arn y r asnl Ovariaioslany faschlonses aas The pole pieces were designed to implement thethe frequency band. Obviously any matching arrat~e- radial match only. Other surfaces were omitted
merit to minimize the loss has to be broad band rda ac ny te ufcswr mte
siento minimize te lossato bch roady bsand to allow access for the wave coupling structure.
sied nThe resultant internal field is therefore only an

approximation to the exact requirement. Its axial
Linear dispersion value and accuracy position is adjustable, and it is held securely by

Potential uses of and interest in devices poss- the tension supplied by the adjustment screw in
ssing a wide range of dispersion factors exist. the front, and the locking cylinder, which presses
Based on our laboratory experience, we feel that the f and te lockingtcylinder,.whiprson the back pole pike, at the back. The input
values from D-.lNS/Mz to 2 NS/MHz are currently and output antennae which are loops of 5 mil

achievable, not necessarily over the same band- enameled wire soldered to semirig cables, are
width. For certain applications a useful criter-
ion is the time bandwidth product defined as D 

2  pressed to the front face of the crystal by a small
and a practically achievable number of >500. The cylindrical teflon piece. The diameter of theadviation practcalyineabl nis bersof t onthe loops is 30 mils and they are placed side by sidedeviation from linearity is also dependent on the off the center of the face of the 'fIG rod. The

bandwidth and values in the 1-3% range over band- parallel feed lines joining each loop to the semi-
width of up to 1500 MHz are achievable. There is prle edlnsjiigec opt h ei
widh ofo tor1500of aeng a hvae. thee rized cable intersect at approximately 90' on the
a wide room for tradeoffs among the three pars- face of the rod. The magnetic flux is supplied

meters dispersion value, allowable percentage de- by Afnche rermaTe magnet rings Thepied

viation from linearity and frequency bandwidth. by Alnico 8 permanent magnet rings.The dimensicns

Frequency range and instantaneous bandwidth of the package are 2" dia. by 2 1/2" long and it
accomodates a 120 mils dia. by 200 mil longAside from bandwidth limitations which can be (LoO) YIG rod. Smaller size packaged devices have

traded off as discussed above, there is an upper been built and successfully tested.-:
limit imposed by the appearance of the spurious 2nd With the improved coupling structure described
echo. As was earlier explained, -the lst echo gen- above we observed simultaneous improvement in sev-
erates its own echo and the 2nd echo free bandwidth eral device characteristics. Specifically, overal
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insertion loss was reduced by up to lOdb; lose rip- The magnetic field on the axis of the YIG rod,
pie wa limited to 1-3 db; dynamic range measured calculated by fitting the data represented in Fig.
between the noise floor and the onset of nonlinear 4 to Eq. (20) fo the delay time T, is Hi(r-0) -
high power effects increased by at least 10db; 690+1240x - 454z" Oe (s in m). This field is
electromagnetic leakage fedthrough could be re- quite different from the assumed field at the out-
duced to a level at which it was equal to or lover set of the synthesis. Two points should be borne
than the level of the frequency dispersive time- in mind in connection with this discrepency. The
delayed primary signal. Input/output isolation first one is that, ce mentioned above, only the re-
increased as a result by up to 20db. The spurious dial match of the synthesis was implemented. This
2nd echo signal could also be suppressed to levels will distort the field in the active region of the
lower than the signals' by up to 20db. delay line which extends to a depth of only 1-2=

In Figure 4 v sea oscilloscope traces which into the YIG rod. The field on the axis of a
highlight the characteristics of a representative naked YIG rod; when placed in a uniform DC bias
packaged device operating at S bend. The device field, has a very small linear and a large quadra-
contained synthesized pole pieces designed for a tic spatial coefficients. The required axial fied
field on axis of 300+300a (z in ). Zn all four on the other hand, Is drastically different, hay-
parts of the figure short input pulses. 40 NSac ing no quadratic and a large linear coefficients;
wide, were applied, this difference has to be overcome by the synthe-

Part (a) shows the output obtained at discrete sized pole pieces.
input frequencies as marked. The let and 2nd echcu The second point is, that a sat of pole
are seen to be delayed in proportion to the frequen- pieces designed for a specific field profile is
cy, the latter at twice the rate of the formers, capable of sypporting a whole family of profiles
The leakage feedthrough is not time-delayed and by adjusting the flux passing through them. This
its position does not vary with frequency. We see is analogous to the case of a capacitor where the
that the amplitudes of the spurious leakage and 2nd electric field may be varied by adjusting the
echo signals are lover than that of the primary lt charge accumulated on its plates. The most advan-
echo signals, the latter by as much as 20 db. By tageous field profile for efficient device opera-
weeping the short input pulses across the frequency tion as determined by rf considerations, may not
band and applying the sweeping voltage ramp to the be the original profile from which the pole
vertical axis of the oscilloscope, the frequency vs. pieces were originally synthesized.
delay time dependence is obtained. This is shown In
part (b). The dispersion is .3 NSec/Mz and the References

frequency band 1000MM:. The linearity of the dis- 1. P.R. Morgenthaler, "The Synthesis of Cylindri-
persion is quite good with a 22 deviation from a cally Syametric Static Magnetic Fields in a
straight line observed. By renoving the weeping Locally Saturated Perromagnet," AIP Conference
ramp from the vertical axis of the oscilloscope Proceedings No. 24, Magnetism and Magnetic
while continuing to sweep the input signal, we ob- Materials, 503, (1974).
tain part (c) which shove the amplitude of the out- 2. For a general review and references to pre-
put signal as a function of its frequency. The in- 1970 work see B.A. Auld in Appl. Solid State
sertion lose of the primary 1st echo is 27-30 db Science, Vol. 2,Academic Press (1971).
across the 1000 Mz frequency band and a negligible 3. R.A. Moore, G.J. Moussally, ZEEE, M.I.T.-19,
amount of signal distortion is observed. The spur- 334 J1971).
ious signals are at reduced amplitudes with input/ 4. R. D tech, JAP. 43, 1923 (1972).
output isolation of 33-40 db, and 2nd echo levels 5. A. Platzker, P.R. Morgenthaler, AIP Conference
of 15-29 db below the levels of the primary lt Proc. No. 29, Magnetism and Magnetic Materials,
echoes. 645, (1975).

Part (d) shows operation at the fixed frequercy 6. J.L. Doane, Technical report 22, Microwave and
of 2.8 G M where the input power increases from Quantum Magnetic* Group, M.I.T. Center for
the upper trace dowvards. The relative input Materials Science and Engineering, June 1970.
power levels are m kid-inIhe figure. The lowest 7. F.R. Morgenthaler, IEEE, MAG-8, 550, (1972)
trace clearly shows the nonlinear high power effect 8. B.A. Auld, W. Strauss, JAP 37, 983 (1966).
on the signal; the output pulse shows signs of a
breakdown and is no longer a delayed replica of
the input. A complete breakdown occurs upon a fur-
ther increase in the input power (not shown in the
figure). The threshold level at which nonlinear *Supported in part by the National Science

response sets in is app. -1Ob and the dynamic Foundation, the Naval Research Laboratory and

range for linear operation is 44db. This was the Joint Services Electronics Program as

measured in a setup which included a 47 db S band administered by the MIT Research Laboratory
amplifier with a 5 db noise figure. It can be of Electronics.

seen in part (d) that the 2nd echo saturates at
lover power levels than the lst echo. This suggests
that the energy density of the signal tends to in-
crease in proportion,to its delay time and hence
that smaller dynamic ranges are to be expected in
delay lines exhibiting long delays. This tendency
may be offset in low focussing internal magnetic
field profiles where the signal energy densities
are lower.
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Fig. 2 Diagrams explaining nagnetoelastic delay
line operxtion: (d) w-k relation,
(b) axial cross-section of the YIG rod
(c) group velocity vs. time.



-13-

-- _- -MAGNETIC TUN!NG SCREW
(IRON)

IRON LOCKING CYLINDER _

-- -
E. ON ND CAP

HOUSING- _ \ .... MOUNTING SCRE W

ALNICO RING MAGNETS 

- -IRON POLE PIECE (BACK)

BRASS RETAINER 
Y R

[ _ -- -YIG ROB

TEFLON ANTENNAE SUPPORT 
TE 

_ _ .. _ FLON SPACER

-- WON POL.E PIECE (FRONT)

LOOP ANTENNA-A 

ONCO

ALNICO RING MAGNETS

-IRON END CAP

AOJUS.,AENT SCREW - -

TIME PR". ,FILTER

ASSEMBLY

Figure 3 Exploded view of packaged delay line
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Figure 4 Measured delay line performance (refer to text for discussion).



The following sets of figures provide further information concerning the

characteristics of the Time Prism Filters that were developed by employing

the field synthesis techniques.
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2.5 -
DELAY TIME ( 100 NSec/DIV) 2.5GHz 4.0GHz

(a) (b)

Figure 1. Characteristics of packaged device after its removal from the

magnetizing field. (a) Frequency as a function of delay time with a

straight line superimposed for comparison.The dispersion is .35NSec/MHz.

(b) Signal amplitude as a function of frequency.Insertion 1oS39-45 db.
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Figure 2. Time Prism characteristics after couplinF optimization.
(a) Device output at four distinct frequencies as marked.leakape amplitude
equal to or lower than first echo. (b) Frequency as a function of delay
time.Dispersion is .3NSec/MHz. (c) Signal amplitude as a function of
frequency.Insertion loss 32-35db,leakage amplitude lower than or equal to
first echosecond echo amplitude lower by at least !5db.
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Figure 3. Dynamic range.Relative input power is as marked. (a) Fixed

frequency 2.8 GHz.Lowest trace shows nonlinear high power effects,lineaz

dynamic range 44db. (b) Full band sweep of 100OMHZ in each trace,linear

dynamic range 44db



-19-

0 * 0 K
minininm immimml

2.0 UiRN-""w "-

DELAY TIXIN. ( 50NSec/DIV) 2.0GHz OM z
(a) (b)

Figure 4. Characteristics of a filter in a laboratory setup. (a) Frequency

as a function of dela time. Dispersion is .38 Njec/Hz. (b) Sirnal ampli-

tude as a function of frequency.Very flat insertion loss of 35+.5db
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Thin Film Input/Output Coupling Structures

The antennae are the major components in determining both isolation from

input to output and the coupling efficiency. Previously optimization of these

two specifications was difficult at best due to a number of problems inherent

in using hand formed loops, including: (1) inability to make reproducible

loops, (2) questionable reliability of wire loops due to embrittlement from

work hardening, (3) limited isolation due to overlapping of input and output

loops. The proposed design attempts to overcome these difficulties. The thin

film antennae will: (1) be reproducible, given a design mask, (2) not be

subject to embrittlement through work hardening, because the antennae will he

sputtered and etched on a rigid substrate of alumina, (3) improve isolation

with nonoverlapping loops and perhaps ground separators. In addition to

accom-riodating for proposed antennae, the proposed delay line fixture should

allow for interchanging of the iron pole pieces, which shape the magnetic field

applied to the YIG rod. Ultimately this ability to interchange pole pieces and

antennae will open the way for a future series of experiments to maximize power

handling capabilities, minimize attenuation and maximize antennae isolation and

coupling.

The SM thesis of Leslie Itano, now nearing completion, has as its main goal

the design of a magnetoelastic delay line utilizing thin film input and output

antennae. Previous delay lines utilized resonant cavities or hand formed wire

loops to provide the electromagnetic input pulse and recieve the output pulse.

Although the delay line performance with the hand formed wire loops was excellent,

the results were extremely difficult to reproduce, requiring many hours of pain-

staking initial assembly work and many more hours of tuning at the test bench for

each antennae pair. Then, with all this loop adjustment, the wires sometimes

became work hardened and embrittled, resulting in highly tuned out unreliable

antennae. In contrast, the thin film antennae are made photolithographically
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using a mask with a specific design. This method produces consistent, easily

reproducible and reliable results. The fabrication time for thin film circuits

is also significantly less due to several factors. First of all, a pair of

antennae is produced on a single substrate so that several substrates can be

processed simultaneously. Secondly, once a substrate has been processed and the

antennae pair is etched onto the substrate, the circuit is fixed. The thin

film antennae are not malleable like the wire loop antennae, eliminating the

tuning step and further reducing fabrication time. Thus, the thin film antennae

is not only more reproducible and reliable, but it requires less fabrication time

than the hand formed loop antennae.

A secondary achievement of this thesis is the design of a flexible delay

line fixture. By "flexible", we mean that the fixture is designed to allow for

a range of antennae of substrate thickness, pole pieces which shape the internal

rod profile, and thin film antennae designs. This ability to interchange

components, and to interchange them quickly makes this design well suited to

research.

This new fixture design also retains the advantagesof previous designs. The

new fixture is compact; it can be self-contained since allowance is made for the

use of ring magnets. The pole pieces have been synthesized to provide linear

dispersion.



Description of Fabrication Seauence (Summary)

This section, which will form a portion of ltanr9's thosis,

describes the fabrication of the YIG delay line. First, an over-

view of the fabrication, and associated problems will be pre-

sented. The three major categories which will be included

are: (1) producing the thin film antennae, (2) manufacturing

the fixture, and (3) assemblying the delay line. Second,

a sumnary of the fabrication sequence will be provided as an

aid for subsequent work.

4.A. Producing Thin Film Antennae

The first step in producing a thin film antennae is mask

fabrication. This step involves designing the antennae,

reducing the pattern and transferring it to a glass photo-

graphic plate. This glass plate, complete with antennae

pattern, is the mask. In the meanwhile, an alumina substrate

has been sputtered by an outside recorder with thin film
0

chrome-gold. The thin layer (10C-200A ) of chromium acts as

an adhesion layer between the substrate and the thicker gold-

layer (200 micro inches). The mask is now used as a photo-

lithographic negative to selectively etch both chromium and

gold layers; the pattern remaining on the substrate is the

thin film antennae.

Developing Etching Process

The complete "etching process" for thin film chromium

gold circuits has been well established. In this overview,



we will first review the general process, explaining the

necessity of each step. Next, we describe the special

"challenges" presented by the antennae designed for this thesis,

and the attempts to overcome these challenges. Lastly, we

summarize the final approach used in this thesis.

The "etching process" begins by spinning on a thin

layer of photosensitive, etch resistant liquid to the sub-

strate. The spin rate and viscosity of this "photoresist"

liquid determine the thickness of this layer. The substrate

is then "prebaked" to harden the photoresist, making it more

resistant to breakdown, i.e., local voids or weak points

in the photoresist caused by handling in the exposure step

to follow. "Breakdown" in the photoresist will allow the

etchant to seep in, etching the gold and/or chromium.

The glass mask already prepared is a negative; that is,

the design area is blackened, blocking out light, while

the remaining area is totally transparent. This mask is

aligned to the substrate edges, contact is made with the

substrate, and the photoresist is exposed to ultra violet

light in those areas where the mask is transparent. The

photoresist is chemically developed, toughening all of the

unexpected areas. The exposed areas are washed away, leaving

behind the design's protective photoresist pattern. The

substrate 4s "postbaked" to toughen the remaining photoresist.

Since the design area is completely protected by photo-

resist, the remaining unprotected area can be etched away.



-27-

Figure 4.la -Thin film antennae designed, set in delay line
housing

Figure 4. lb -t to L r',;erien t ()f couipI i ii' veQC i onf



The top gold layer is etched first with a potassium iodide

soliuton, while the lower chromium layer is etched with a

KMnO4 and sodium hydroxide solution. Finally, the protective

photoresist layer is stripped away with an industrial strip-

per, leaving behind the intact design pattern.

The antennae designed for this thesis (see Figure 4.1)

requires several sputtered through via holes to ground in

close proximity to narrow (3-4 mils wide) lines. The chal-

lenge was to protect the via holes without bridging over

to the narrow lines. Using the established processes and

taking no special precautions to protect the via holes, gold

etch seeped into the holes, partially etching the insides

of the holes. Also large voids were present in those regions

where the photoresist layer was particularly thin, such as the

edge of the via holes. The first attempt to solve this problem

was a fourfold increases inthe photoresist thickness (to 4

micron). As hoped, this change resulted in improvement co-

verage for the via holes; however, voids still appeared

at the edges. In addition, the etch factor has increased

significantly, causing a dramatic change in line width or

effective line impedence. The etch factor, as shown in Figure

4.2, is the difference between the top surface or apparent

edge of the photoresist and the edge of the etched line. In

general, the etch factor can be due to breakdown or softening

of the photoresist edge which allows the etchant to seep

underneath. In the case of the thicker photoresist, the

increase in etch factor is likely due to diffraction of the
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Figure 4.2 - Etch factor
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exposure light. Figure 4.3 illustrates how this diffraction

causes extra exposure of the thicker photoresist near the con-

ductor surface, exactly where its protection is needed.

Figure 4.4 shows how a vertical visual inspection completed

before etching would not detect the diffraction caused dif-

ference between conductor surface or effective photoresist

edge and top surface or apparent photoresist edge. So this

modification brought some improvement, but proved to be more

problematic than helpful.

Returning to the original I micron thick photoresist layer

the etch factor was further improved by increasing the post-

bake temperature from 900C to 1500 C. This seemed to further

harden the photoresist edges, resulting in less etchant seep-

ing underneath and etching the metallic layer.

The remaining problem of protecting the sputtered through

holes was solved by manually applying a thick, acetone based

resist to the holes with a few strands from a camel hair

brush. Since the holes were only 3 mils in diameter with ad-

jacent conductor lines only 2-3 inils away, this task requried

steady hands, but resulted in totally protected sputtered

through holes.

4.B. Manufacturing the Fixture

Manufacturing the delay line fixture involves designing

the components of the housing and then machining them. Since

rusting of the pole pieces had altered the field profile of

previous efforts, these parts were flashed with Ni for pro-

tection.
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Figure 4.3 - Diffraction effect on photoresist
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Top
View Au I Photoresist

(as seenI
in vertical
inspection)

rwl-- etch factor

photoresist

S ide _________________ __ Au
View substrate

Figure 4.4 -Shows how vertical inspection does not detect
diffraction caused etch factor
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4.C. Assemblying the Delay Line

The final delay line assembly starts by Putting together

the connectors and main housing (see Figure 4.1). The

next step is to fix all of the flexible parameters, including

raising the front pole piece to compensate for the substrate

thickness, installing the specially designed pole pieces, and

epox.ying thethin film antennae to the front pole piece.

The electrical connections between the substrate and coaxial

connectors are made with a I mil x 25 mil x 100 mil gold

ribbon which has been gap welded to the substrate, then

epoxied to the connector. Gap welding is a general technique

for thermal compression bonding gold ribbon to gold metalli-

zation (including thin film gold metallization). After fin-

ally installing the remaining components, including YIG rod,

front pole piece and retainers, the delay line is complete

and ready to test.

The following detailed summary is provided as aid for

subsequent work:

Description of Antennae Fabrication

A. Mask Fabrication

1. Design antennae

2. Transfer design (at 20x) to rubylith

3. Photoreduce patterns

4. Transfer (xl) patterns to glass photographic

plates

B. Sputtered Substrate Procurement
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I. Order alumnina to size--15 mil thickness ordered

to mininize gap between rod and pole piece.

Width and length determined by fixture.

2. Order holes drilled for sputtered through holes

3. Sputter substrates with chrome (for adhesion) and

200 ,l inches of Au.

C. Substrate Etching Summary

I. Spin AZ 1350J photoresist on to metallized

substrates.

2. Bake substrates at 900 for 25 min. to dry photo-

resist.

3. Align glass photographic mask to both substrate

edges and sputtered through hole sites.

4. Expose photoresist with ultraviolet light,

using glass photographic mask as a negative.

5. Apply protection paint to sputtered through

holes.

6. Develop photoresist with Shipley AZ Developer,

removing exposed portions of photoresist.

7. Postbake substrates at 150 0 c for 25 min. to

toughen photoresist.

8. Make batches of both chromium and gold etch

solutions as follows:



Gold Etch Solution

J.324 grams ( (solid)

+ 1.134 grams K!

50 milliliters water

Chromium Etch Solution

3.25 grams KMnO 4

3.25 grams NaOH

50 milliliters watEr

9. Etch away exposed gold and chrome metallizations.

10. Strip remaining photoresist with Allied Chemical

A-20, a phenol based industrial stripper.

D. Housing Construction

i. Design housing

2. Machine housing

3. Apply Ni flash

E. Final Delay Line Assembly

1. Assemble coaxial connectors

2. Gapweld Au ribbon to antennae input and output

3. Screw front pole piece into main housing, ad-

justing height so that substrate surface is

5-10 mils below connector height.

4. Attach substrate, antennae side up, to front pole

piece with Ag point. Antennae input and output

must line up with connectors.

5. Attach Au ribbon to connectors with Ag epcxy
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6. Assemble balance of delay line, including back-

pole piece, YIG rod, teflon rod retainer, fixture

retainer.
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Appendix A - Pole Piece Design

I. Overview

This appendix outlines the synthesis procedure de-

veloped by Morgenthaler and Platzker [19]. Although more

general cases can be treated using similar methods, this

discussion will be restricted to the synthesis of cylin-

drically symmetric fields where the material shape is a

cylinder or disk. The logic behind the pole piece design

is as follows. The magnetic potential inside the cylin-

drical material is determined by an appropriate series

expansion once the axial magnetic field, H (O,z), is spec-z
ified. The space outside the cylinder is then divided

into separate regions. Within each outer region, an ap-

propriate selection of functions is made with which to

expand the Laplacian magnetic potential in that region.

The coefficients for each outer region expansion are then

determined by matching boundary conditions with the inner

potential so that the error is mininmized in a least sauares

sense.

Once the outer potential has been determined, the

edges of pole pieces which surround the cylinder can be

designed to coincide with lines of equipotential. With

the application of an appropriate dc magnetic field, the

pole pieces become energized so as to produce the correct

outer field and consequently the correct axial magnetic

field in the cylinder. It is imnortant to realize that

although an infinite number of combinations of material

size, shape, and pole piece design exist, all of which

would create the desired field, once one has been chosen

the field it creates is unique [181.
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II. Inner Field Determination

The equations governing the dc H field in a ferro-

magnet that is everywhere locally saturated are

F X (H + Ha) = 0(A.l.a)

• H> 0 (A.l.b)

14 (A.2)

V xH 0 (A.3)

V • (H + M) = 0 (A.4)

where -a is an effective magnetic anisotropy field which may

be ignored initially. In terms of the inner scalar magnetic

potential 0, the relations

= - (A. 5)

and M _ M (A.6)

satisfy equations (A.1), (A.2), and (A.3). These equations

may be substituted into equation (A.4) to arrive at

M

V [(1 + - .j) = 0 (A.7)

In the limit as jVtJ ) j , the non-linear portion of

equation (A.7) goes to zero and the equation becomes Laplace's

equation. Thus if the magnitude of H grows as distance

from the cylindrical axis increases, then at the radial

boundary the inner field potential should be approximately

Laplacian. This aids the matching of boundary conditions

with the outer field, which is Laplacian.
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The axis of the cylindrically symmetric ferromagnet

is assumed nonsingular, so an appropriate expansion of is

CO 2n
- a E a(2n(z) r (A.8)

n=0

SO that H(r,z) = 00 a'(z) r 2 n

n=0 2n+l
+ r Z 2(n+l) a 2 (n+l) (z) r (A.9)

A n=O th
where i n is the unit vector in the n direction and the
primes denote differentiation with respect to z. Expanding

M separately as 2n

M(r,z) = M1^ z  Z b (z) rn= 0  
2 n

A

+ 1 r b 2n1(z) r' (A.10)
n=0

allows the use of equations (A.1), (A.2), and (A.4) to

determine constraints on the a. and b. coefficients.i i

Use of equation (A.l.a) results in

b (a' (z) )2n  b 2n+l
n== Cz 2nn=O 2n+l

M( b2n(Z) r 2 n)( Z 2(n+l) a2 (n+l)(z) r 2n +l = 0
n=0 n=O

where M may be factored out as assumed non-zero. Multiply-

ing out and collecting terms yields a polynomial in r,

Z (a' b
S=0 n=0 2n 2(s-n)+l

- 2(s+l-n) a2 (s+l-n) b 2n r s  = 0 (A.11)

Since this equation must be satisfied for all r, we must

have that

S
E (a'n b2(s-n)+l -(s+l-n) a2(s+l-n) b2n) = 0 (A.12)

n=0

for s = 0, 1, 2, 3, .... This gives the first constraint

on the coefficients. However, equation (A.l.b) also re-
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stricts the sic(n of a b0 to be a' b0 > 0.

Use of equation (A.2) results in

002n 2 CO2n+l 2
E b2n(z) r + ( b 2n+l(z) r ) =n=0 n= 2

Multiplying out and collecting terms yields a polynomial

in r,

S20 +n_[ b2 + b 2  l-)
0+ E [ (b2n+1  2(s-n)+l b2n b 2 (s+l-n)

s=0 n=_ 2(s+l)
+ b0 b 2 (s+l)I r 2 = 1 (A.13)

2

Setting r = 0 reveals that b0 = 1. Furthermore, from re-

peatedly differentiating the equation with respect to r

and then evaluating at r = 0 we find that

s
E (b2n+1 b2(s-n)+l + b2n b 2 (s+l-n))

n=b
+ b0 b2s+l 0

for s = 0, 1, 2, 3, .... This gives the second constraint

on the coefficients.

Use of equation (A.4) results in

Sn (a' + M b2 ) r2n
z^nOo. n 2 2n+l]

+ I r  E (M b2n+l + 2(n+l) a2 (n+l)) r
n=0

2
or [4(s+l) a2 (s+l) + 2(s+l) M b2s+1s=0 2s+ a2s + M b' ] r = 0 (A.15)

This can hold true for all r if and only if

2

4(s+l) a2 (s+l) + 2(s-4-l) M b2s+1

+a" +Mb' =0 (A.16)
2s 2s
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for s 0, 1, 2, 3, .... This gives the final constraint

on the coefficients.

In addition to equations (A.12), (A.14), and (a.16) we

have the constraints that b l = 1 and a' >0. Since a
0 0 a

must be either positive or negative definite over the inter-

val to insure saturation, without loss of generality we may

take a' > 0 and b. = +1. The solution of equations (A.12),

(A.14), and (A.16) is thenz

a"I
s = 0, b 1 - r+ M (A.17.a)

a - 1 b a' (A.18.a)221 0

b- 1 b (A.19.a)

s > 1,

b 1 (all + M b's (A.17.b)

s
[2(s-k l 2s 2s /(6

+k=l 2(s-k+l)a2 (s-k+l)b 2ka kb 2 (s-k)+ll 1/(a+M)

a2 (s+l) {a6 b2s+1  (A.18.b)

s

E (s-2 (s-k+l)a2 (sk+l)b2k- akb2 (s-k)+lJ/
2 (s+l)

k= 1

s 1 b2

b2(s+l) = E bk b 2s-k+2 + 1 bs + (A.19.b)k=l

Of course, when actually calculating the inner potential on
the computer the a. and b. coefficients are not found expli-

1 1citly, but approximated numerically.
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III. Outer Field Determination

Now we must find an appropriate expansirn for the

Laplacian magnetic potential outside the cylinder. Laplace's

equation in spherical coordinates , is

;_ + 2+ 2 J + cot; 2-+-12 + co 0 (A.20)
a 2 2 2 sin2e 3 2 P 3P 2 ;a

which has as a solution

(.n (n +1)(C1 p + C2 p- ) (cos m) Pn(cos 6) (A.21)

If we assume no p variation (i.e. m = 0) and transform

this solution to cylindrical coordinates (where of course

it is still a valid solution) then we have that

[C (r 2 + Z2)n/ 2 + C2 (r 2 + z2 )-(n+l)/2]p°(Co )

Ignoring the second solution, we finally arrive at

C1 (r2 + z 2)n/2 P° (Cos 9) (A.22)

where tan e = and P°(cos 6) is the associated Legendre
z 1

function of degree n and order zero. If we then define

P (r2 + z 2 ) n / 2 P0 (cos e) (A.23)
n n

A

we can expand the outer potential y in terms of these poly-

nomials as

- = C P n(r,z) (A.24)
n=0

For reference, the first five P functions are listedn
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below. Notice that since the Pn functions are non-sirvoular

for all z (i.e. have their sources at infinit'!' , t ',,v :-u.t

be used for regions outside the cylinder which contain the

z-axis.

P 1

P0=1

P1 = z

* 2 1 2P 2 =z y jr

* 3 3 2
P3  Z -2 z r

* 4 22 +3 4
P4 =z -3z r

In addition, since in general the desired on axis field

to be synthesized is a polynomial expression, and since

the inner potential was expanded in a polynomial in r and

z, it makes sense to expand the outer potential in the above

polynomial expressions rather than the usual Bessel functions.

In regions outside the cylinder which do not include

the z-axis (or where the z-axis is singular), solutions with

a singularity at r = 0 may (or must) be added to equation

(A.24). Instead of using the second solution to Laplace's

equation in spherical coordinates which would yield a func-

tion singular only at a point, equation (A.22) is used along

with Laplace's equation (ignoring ¢ variation) in cylindri-

cal coordinates,

-- + - + 0 (A.25)

3r r Dr

to obtain a second set of solutions singular on a line of

the form

On (rz) P n (r,z) • ln r + N (r,z) (A.26)
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where N= z+ [ 2 (zn-Pn) - f r n- dr] dr

n .'r n nn )*r n-. 2 d] r

Qn (r,z) is more usefully given by the recurrence fcr-iula

* = 2n-1 * n-i 2 +r 2  * 2(p (A.27)
0n n Zn-i n n-2 n n-Pn-1 )

with Q0 = (in r + 1). Therefore, in general the outer

potential y may be expanded as

N . N-I .
- = C0 + Cn P n(r,z) + E C' Qn(rz) (A.28)

n=l n= 0  n '

where C0 represents a reference potential and may be set

to zero.

For reference, the first five Q functions are listed
* n ,

below. Notice that the Q functions, unlike the P func-
n n

tions, have their sources at both zero and infinity.

Q= in r + 1

Q2= z lnr + z

03 = z in r-
Q z ln -2 r 2ln r + z2

* 3 3 2 3

Q4 =  Z r lz r ln r + z

* 4 2 2 3 4  + z4 3 4
Q5 Z n r - 3 z r inr + 8 r in r z 16 r

5 8

Although the Q functions can be approximated by the Pn n
functions in many cases, this would require many terms in

the expansion and P functions with large powers of z.n
Since in general it is better to expand in lower order

polynomials, if possible 0 n functions should be included

in the expansion of the outer potential. Expansions using

th( first five Pn functions and the first five Cn functions

yielded results consistent to better than an Oersted for the

cases examined in this thesis.



IV. Boundary Conditions

This discussion is restricted to the case of a cylinder

or disk, so it is beneficial to subdivide the outer region

at the corners and carry out three separate expansions for

Those outer regions with z < 0 and z > L cannot con-* _ - M, ) ,

tain Q functions. The matching of t = ¢ and (1+ -) -n =

is carried out in a least squares sense. That is, if we
anassume the outer potential in a given region has been spec-

ified as

N
- = f (r,z) (A.28)

j=l 3 3

then we are trying to minimize the least square error de-

fined as

C N
E = [ - C. f.(r,z)] 2 dS (A.29.a)

Boundary j=l 3
Surface

An equivalent expression is

2  N 2> 2 M B
E < Z C. f.) >+ <A 2 l+j lp-

3=1 N f.

- Z c. -- ] 2  (A.29.b)
j=l 3 an

where < > denotes averages over the boundary radius, and
A1 and 12 weight, respectively, the relative importance of

the tangential and normal components of the field subject
2 2 =

to 1 +X 2  1. Requiring 3- 0 yields the set of equations

N 2f. f.
E <X1 f fi > + < 2  ; 3>] C.

j=l ii 3 2an an J

X f (12 +f M ) 2-b> (A.30)
S  2 n + V n

for i = 1, 2, 3, .... N. The solution of equation (A.30)
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for the C. coefficients yields an outer field that satisfies
3

the boundary conditions.

The right circulir cylindrical shape of the samples

considered can be exploited to simplify the solution of

equation (A.30). The radial match at r = R, and the end

match at z = L are considered separately.

IV.A. Radial Match

In order to obtain a good match with the outer field

at the radius of the cylinder, the inner field is first ap-

proximated as

- 14-1 zn
H z,R) = E a n n (A.31)

N-1
and [H (zR-) + M (zR-)] = Z , Z)n (A.32)r r n=( (A32)

where N is an integer yielding tolerable error. This

approximation is necessary since the inner field at the

radius no longer has a polynomial form, while the outer

field at the radius does have a polynomial form.

The a n and n coefficients are found from a least

squares fit using an inverse Hilbert matrix of order N.

This arises from solving for the least squares coefficients

such that the inner potential expansion,

N
f(x) = Z Ak gk(x) (A.33)

k=l

is approximated as a polynomial

0 N o xk-i
f (x) N A k x (A.34)

k=l

The matrix least squares equation is of the form
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2g2 <A0 > f2 g <g1 g2> <g2 g3 > 1.. < "1

<gN gl> <g2 > <g g3 > <A> f

* * (A.35)

where <gi gj> L gi(x) g (x) dx

lL0
and <gi f> = L 0 gi(x) f(x) dx

If the length of the cylinder is normalized to unity then

<g1 g> = ~ i+j-2 dx =.---1
> 1

Substituting into equation (A.35) yields

A 0 I f (x) dx
2 314 1

21 A0  Ix f(x) dx

A 1 6x 2 f(x) dx (A.36)

A Y. x3 f (x) dx]

where the matrix multiplying the A coefficients is the
n

Hilbert matrix of order N.

The solution to equation (A.36) is then

A0 'f(x) dxA1

A 0". f(x) dx
A 1  (A. 37)

N

0 XN f(x) dxAN
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-1

where H N is the inverse Hilbert matrix of order N. C e.r,

the accuracy obtained with a comouter solution to ecouation

(A.37) can be deceotive. The Hilbert matrix is an ill-condi-

tioned matrix, whose inverse rapidly overflows the capacity

of a digital computer. Fortunately, from an enqineoring stand-

point this inaccuracy is largely unimportant, changing the

pole piece design only at distances far from the crystal sam-

ple. Since solutions to Maxwell's equations typically decay

exponentially, varying the pole piece design far from the
sample has little effect on the axial magnetic field. There-

fore, the ill-conditioned property of the Hilbert matrix ac-

tually allows greater flexibility in the pole piece design

and implementation.

In terms of a and n the C and C1 coefficients of

equation (A.28) are found to satisfy

Cp (P LP) - (lnR + l)Cp

N-p R2k
- R Ap+k,k ' [Cp+k + (nR+ k)Cp+k ]  (A.37.a)k=1

R a N-p 2k
CO P R 2kA

kp LP  zl p+k,k

{2k[Cp+k + (in R +k)Cp+k] + C1 +k (A.37.b)
pk

where A nkk n!
n,k 2! [(-) 2k

and f 1 k=O

Itk 
1

k - k>O

These equations are not general, but hold only for the special

case of a right circular cylinder under discussion Since

by design C' = 0, equation (A.37.a) immediately gives C .

Ill I IN



-49-

Alternating between equations (A.37.b) and (A.37.a) produces

an unraveling that calculates in order C N; C c' .:,- .

S..; C. The value of C. is immaterial and may be set to

zero.

IV.B. End Match

The outer potentials for z < 0 and z > L can be found

in a similar fashion. For the z = 0 end face, matching ,

and Hz + M yields

a (0)
nA n even
n,n

C (A. 38)
a n-(0) + M b n_(0)

n odd
An,n-I

where a and bn satisfy equations (A.17), (A.18), and (A.19).n n
Similar expre2ssions result for the z = L end face.

V. Design Example

To illustrate the use of the synthesis technique, it is

helpful to work through a low order example by hand. We shall

attempt the synthesis of a linear axial magnetic field of the

form

H (0,z) = A + B-z (A.39)z

in a YIG cylinder of length L and radius R. For simplicity

anisotropy will be ignored. Choosing

1 2
a 0 =sA.z +f tB.z (A.40)

satisfies the requirement that



-V ( - £ z) 2n
=V a (z) r n = A + B-z (A.41)

= 2n =

Using equations (A.17), (A.18), and (A.19) we have that

b1  1 A (A.42.a)
a1 = 2 Bz + A + M

a 1 A(A + B-z) (A.42.b)

2 4 B-z + A + M

1 A2b 2  1 A (A.42.c)
(B-z + A + M)

This allows the inner magnetic potential to be approximated

as

p=- (Az+ 1B ) + " z + A8+ M r (A.43)
2 4(B z+A4

The inner magnetic field is then given by

i 1 A B 2  
AH (r,z) = A + B Z - M (Bz + A + M) r z

1 ABz + A2
2 PBz +A+M r I r  (A.44)

The magnetization is given by

A- 1 2  2 A

M(r,z) = M 1 - A 2

1 A(A + B z) 34A+ M [ - Bz + A + M r I r  (A.45)

Using equations (A.31) and (A.32) we then have that

H (Rz) = 0 + 1 (L) + a2 (L)2 (A.46.a)

Hr (Rz) + Mr (Rz) ] + 1 ( ) + 22 (L) (A.46.b)

r r 0 1 LI I2 L



For simplicity of calculation, we now assume that we are

only concerned with matching tangential H, and we ignore the

matching of normal B. This corresponds to setting X1 = 1 and

X2 = 0 in equation (A.30). Expanding the outer potential as

22
- C P (r,z) + C; Q0 (r,z) + C3 Ql(rz) (A.47)

n=0 n n

allows the least squares coefficients to be found. In terms

of the a coefficients we find that:n

CO = C0 - L ( g + In R)
C0  a 0 -c(L) 2~lR

1 e
C1 2 L

1 e2C2 = 'N __
L

1 (a l) R,2

C6 L

More complete solutions can be obtained using the com-

puter methods described in section IV. For comouter solutions

an expansion of the form of equation (A.28) is assumed. For

the case of A = B = 300 in equation (A.39) we have as the

coefficients:

End Match:

Coefficient Value

C1  - 2160.0000

C 2  - 21.6346

C 3  - 9.2571

C 4  - 0.2525

C5 0.1111



-32-

Radial Match:

Coefficient Value

C1  - 358.0249

C2  - 153.2998

C3  0.3632

C4  - 0.0173

C' - 1.9934

C2 0.3182

C0.1384

C4  - 0.0284C4

A plot of the equipotential contours implementing both the

radial and end magnetic potential matches is shown in figure

(A.1). Here, the magnetic potential end r,.atch at z = L lies
above that of the radial match at z =- L, so the area enclosed

by the two equipotentials would have to be negative. This is

not physically realizable, and the end match at z = L is not

implemented. Since the magnetoelastic interactions occur near

z = 0, this does not normally present any real problems.
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Air

Fe

Fe

Air Fe

YIG Rod

I I
z= 0 z= L

Figure (A.1) - Pole Piece Synthesis Example Showing

Both Radial And End Match
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Synthesized Magnetostatic Modes and Waves Using Nonuniform Magnetic Bias Fields

Our progress on employing nonuniform dc field synthesis to magnetostatic

modes and/or waves is described in the attached set of preprints and reprints

of papers that were presented at the following conferences:

-1980 Intermag Conference, Boston, Massachusetts, April 21 - 24, 1980
-1980 International Conference on Ferrites, Kyoto, Japan, September 29 -

October 2, 1980.

-1980 Ultrasonics Symposium, Boston, Massachusetts, November 5 - 7, 1980

-1980 Conference on Magnetism and Magnetic Materials, Dallas, Texas,
November I - 14, 1980

For completeness, reprints are also included of our earlier work described at the

1977 Conference on Magnetism and Magnetic Materials and the 1978 Intermag,

Florence, Italy.
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controllr~d limiting levels.

We also review experimental evidence of high-Q gradieit-localilzcd rcsonancc.r-

in platelets and thin filmns of single crystal YIG. Included are recent 0bserva-

tions of irauniostiltic -;~rface %wjv,-s in~;~ ~ Ii- th-in fiim bia ad '4iL'!

nonuniform in-plane field caused by movable permalloy strips.
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Introduction

Our interest in controlling magnetostatic waves and modes by means of dc

field gradients dates from the experimental observation of localized high-Q

resonance in single crystal yttrium iron garnet (YIG) reported by Zeskind and

Morgenthaler. 
1

Our interpretation of these resonances is that localized magnetic mode

-patterns are formed in which the resonant energies are guided or confined by

regions of high dc field gradient within the crystal. By appropriately

designing *nternal magnetic field profiles, one can create apparent "surfaces"

or "tracks" of magnetic field discontinuity. Magnetic waves bound or guided

by such gradients can be made to follow appropriate propagation paths with

controlled group velcoity. If the mode amplitudes are very small at the edges

and corners of the sample, the surface scattering (which one would expect to

be enormous) is largely prevented. Consequently, the Q of the resonance

governed primarily by the intrinsic linewidth of the bulk crystal together

with normal circuit loadinj considerations.

in the first experiments such gradients arose naturally from the nonuniform

2 3
shape demagnetizing fields; in subsequent work by Cooley and Horowitz , we

have created pre-specified gradients with shaped pole pieces designed by field

synthesis techniques. A similar approach has recently been followed hy Tsutsumi

at al.4

We first review these early experiments and the theoretical treatment or
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quasi-two-dimensional ma-netostatic modes of single domain thin ferrite cir-

cular disks or annular rings, when the dc magnetic field is normal to the

plane and varies radially.

We find solid theoretical justification for the 'track" concept and

enumerate mode patterns for both gradient-modified boundary mode , and gr'dient-

dominated waves5. The important effects from rf fringing fields at the edge of

the disk are also considered.

In the absence of a radial gradient, all of the modes of a solid disk

have circularly-polarized rf h-fields with zero volume-divergence. These modes

are stongly influenced by the magnetic pole distribution on the edge of the

disk and the rf energy becomes progressively concentrated near the rim as the

mode index increases.

When the field gradient is modest, the modes retain these general char-

acteristics but develop non-zero values of v.h? throughout the volume which

change both the state of polarization of the field and the distribution of rf

energy; the latter can then predominate either in the central portion or near

the edge of the disk. In addition, both the mode frequency and the velocity

with which the mode energy circulates are found to be altered.

For increased gradient strength, the volume divergence of certain modes

can change so dramatically that selective localization or expulsion of the

energy occurs. The sense of polarization can also actually reverse. I cer-

tain cases, the volume divergence of the rf m,,agnetization can become infinite

(in the lossless exchangeless approximation) at a certain interior radius, r .

The magnetic pole distribution at this "virtual-surface" thus resemble that of

a true surface and can serve to guide and localize the mode.

These previously discussed "virtual-surface" modes, are reanalyzed in

terms of the polarization factor of the rf magnetization. Analytic solutions;

of that factor are continuous through the "virtuil-surface" and are given for
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the two-dimensional mndes associated with a special class of field profiles.

We next discuss the synthesis of modes with pre-specified characteristics,

such as velocity of energy circulation and rf energy distribution. In addi-

tion, boundary conditions that have been imposed to make the mathematical analy-

sis more tractable (namely placing the thin film or disk between perfectly

conducting plates) are removed; the bias field is still normal to the plane but

radial gradients although now generalized to arbitrary form must be only weak to

moderate.

For mathematical convenience, we choose to model the thin film disk as a

very oblate spheroid with semi-axes a and b. The thickness of the "disk" at

its center is 2. and the radius is a where b<<a.

The modes analyzed are quasi-two-dimensional in that the rf magnetization

is assumed to be without appreciable thickness variation; the fringing magnetic

fields ere, of course, three-dimensional because the spheriod is surrounded by

free space.

The results can be utilized to predict the behavior, of a new class of micro-

wave resonatr. In addition, we predict that frequency selective filter-limiters

can be con, tr icttd with gradient-controllen limiting levels.

Finaliy, we consider the quidirn of maqnetostatic surface waves (MSSW) on

films wit.h an in-plane bias field that may be a function of those coordinates

transverse to the propagation direction. In particular, the recent experimental

observatia, 6, 6 of MSSWs in a rectangular YIG film place between strips of permailoy

and in the pline of the strips is reviewed.

Local i zed i nh-0 Reoravce in NorL ni form DC Fields

While measuring the microwave couplin;n between two antennas closely spaced

on the surface of a bulk single crystal YIG slab (with dc magnetic field applied

perpen!icular to the slab), Surprisingly, despite the vry nonuniform demagnetiz-

ing field caused l,y the nonellipsoidal sample geometry, Ze:kind 7 observed spatiil y
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localized hinh- resonant nodcs. The convenient planar neonetry along wit.h

the hich-, and riannetic tunabilit" oF these od;s ucqesid the ',Ou,sibil I 0',

a totally intearated monolithic YIG filter.

The basic experimental configuration annears in Fiqure 1. Gold thin film

antennas were photographically etched on the surface of the bottom alumina

substrate. The 30 urm wide and 4.2 min lono antennas are separated by an 80 v nm

wide c',,ound strip to improve electro-maqnetic isolation. The bulk sinale

crystal YIG slab cut along the (110) plane (shown in place on top of the

antennas) is glued into a slot milled in the surface of the top alumina substrate.

The top substrate and YIG, together, move with respect to the bottom substrate

(antennas) thus allowinq plots of spatially dependent microwave properties of

the YJG. Both sides of the slab are polished to a surface finish of about one

half i;icrometer. The dc magnetic field is applied oerpendicular to the plane

of the slab. (
Figure 2 is a plot of microwave counl ing between the two antennas as a

function of frequency with antennas located along the center line of the slab

and Hdc = 2300 Oe. The shar resonance at 2.4C CHz is characterized by 0 half-.

power bandwidth of 1.8 MHz corresponding to a loaded-O of approximately 1400.

Insertion loss at resonance was initially on the order of lOdB but was

subsequently reduced to under 2Db. The resonance is maqnetically tunable over

the range 2.2 to 3.0 GHz. No apparent power limiting was observed with input

signals of up to +10 dBm.

In Figure 3 we plot microwave coupling as a function of antennas displace-

ment along the surface of the YIG slab for fixed frequency (2.46 Gz) and fixer'

field (2300 Oe). A displacement of 0.0 mm corresponds to antennas located along

the center line of the slab. It is evidently that spatially localized noints

of resonance exhibits synetry about The middle of the crystal with maxiuum
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response occurring at the midplane. Half-power spatial linewidths are

approximately GO ii:a.

Formulation cf the Basic Two-Dimensional Equations

We consider a ferrimagnetic film disk magnetized to saturation in the z-

direction by a dc field H; radial components are assumed negligible throuqh-

out the disk. Since we are interested in magnetic modes of frequency w that

have neqligible electric field energy, the magnetostatic approximation is

suitable and the rf magnetic field may be expressed as h = -Vt . Because the

ferrite is assumed to be saturated by a cylindrically, symmetric field H z(r)

and modes without z-variation are sought, we take the complex magnetostatic

potential (with suppressed exp [jwt] variation) to be of the form

= exp (Iml fy(r)dr jm ) (1)

where ;i; i'; a positive or negative inteqer and y(r) determines the radial varia-

tion of the mode. The latter also describes the polarization of the rf W-field

hr/h dm- y(r) (2)

r M

The other field quantities follow from the Polder susceptibility tensor

and the Maxwell Equation governing the curl of the electric e-field.

They are

Ill _ 1 12r - I ) ) (3a)
r r _ KrT

r

and
ez  : W - olmjy (r)tpr (4)

where

y 0 (l+x) y - M ,m
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Here ; Z/(Z2 -2), K -,2/(Z 2-]2) with Z(r) = Hz(r)/M and ? =/ M . The latter

are, respectively, field and frequency normilized to the stLur, tinn "'< 1 i/,, in'

M; WM = -'11i0M where y (negative) is the gyromagnetic ratio. It is also convenient

to take 2>0 and define a = Qm/!ml.

The polarization factors of the rf maonetization and rf flux were ionored

in our previous work but have been found to be very useful quantities. Consequently

we define

Mr /M m p(r) and br/by M p0 (r) (5a), (5b)

where from Eqs. (3a, 3b) and (4)

Z + ZyO+a and p 0 (Z+I)p-o (6a), (6b)

Z+y Zl+oyO Z+l-op

The wave impendances are defined by

r m 1 ory (r) (7a)

ez m (b

r T17'~
The former quantity must be a continuous function of r.

The magnetostatic equations (Vxlr-O, F T=-wom) require that

r-° = LMr (I+X(r) )(l'y2) (a

or equivalently from (6).

m 2) 2 2

dr r iy)+ (Z #ojy+2Zaj dZ(7 2+Zo 2 )(Z 2 _) dr(
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and 2(1_p2) 2 )+p (8c)
dr r Z2+Z-o2 dr

In regions where dZ/drO, y and p are each of the form (r2!ml-C)/r21ml+C)

where C is a _oristart; in air regions y0 = y.

In rfnqions where dZ/dr is very large, the first term on the RHS may be

neglected and Eq. (8c) inteqrated directly.

Boundary Conditions at the Edge of the Parallel Plate Reaion

As a concrete example, consider a thin ferrite disk of thickness d and

radius R placed between perfectly conducting circular plates that extend to

the radius Ro. The cylindrical surface r=R 0 is assumed either conducting for

fzj < d/2, (a) or for jzj >d/2, (b).

For (a), nr=0 at the radius r=R and from Eq. (7a), y(R )=0.

For (b) a reasonable approximation valid when d/R o<l is

[ ~d)]-I _I d +

[-(mR - nm+l -) (9)

2n =2n

Soluti ns In,.n 7(r) = A,,A+Br )/ (A+BrnL

In order to develon insight into the character of the modes that result

when Z(r) forms a notertial well, we consider this general class of profile

for which Eq. (8c) reduces to

0 x (10)
dZ 2n -(--A-) + TZ-Zx)(Z+Z +17

. x x
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Once a solution of Eq. 12 is found, it can be applied to profiles with iny

desired value of B.

When AO.-Co, this family reduces to Z=A+Ir 2n analyzed previously. 5

Sketches of possible rf magnetic field contours are given in Fig. 3 of

Ref. 5.

For weak gradients, IBR2nl<-: and non-"virtual-surface" modes exist for

m>O when

m R2n I l+y°(Ro0) R 2m

sm = A + n+mBR + -2- [+T-y () 1 (l!)

Solutions for p(Z)

A series solution for p(Z) valid in the vicinity of Z=Z 0 can be obtained by

assuming

p(Z) = . CR(Z-Z )K (12)

and using Eq. (13) to find the recurrence relationship among the various

coefficients, CK' given that CO = p(Z ).

The special cases Zo=A 0 or A.0 must be handled separately and the series

reprcscntation gencrally fails .'hen 7(r Zx  1 (-4,-)/? !cusr4

"virtual-surface" y(rx) is sinaular and the radius of convergence for the power

series goes to zero.

On the other hand, from Eq. (10) it follows that p(Zx ) = Zx/o (or possibly

-a/Z×) and the fliite value allows one to integrate p(Z) through the 0ir'ual

surface.

The result of a detailed analysis reveals that with u = (Z-Zx)/(Zx-Ao )

7x u dW -A . A - )(7-Z x 13)

_(U [G- - m ~--

where for A ,;)satisfies +he folleiv-inq form of linear equation with

?Ionconl'tant c f i i, "
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5 d2 '  5 )i d5 K _

(1+ RUK + ) 1 d 0 (14)(l'+ ,U RKu K) -'--'-+ ( yL K u-d-u +  ( 1CKU ) = (4
K l K d u 2 K = 1 Kld K 2

usino the riethod of Frobenius, the solution of La (1 i of the form

S (Ch+ZruI) u] bKuK+ k d K (15)

K= K k=lK

where bK and dK are constants related to the P C PK' K coefficients and Ch is

an inteqration constant used to match between the power series expansions of the

form of Eq. (12) used on either side of Z . The solution is valid when uI!
-l

but it is also possible to expand W in nowers of u and hence obtain the

asymptotic behavior for large Z.

It should be noted that exchange effects 9 ,10 at the "virtual-surface" are

ignored in this miodel.

The properties of an m=1 "virtual-surface" mode are illustrated with the

profile Z - .3 + 1.095(r/R) 4 for which, if y (m=l,R) = -1, such a mode ccc!,rs

when "-.'6,.- . The associated m-field, h-field and b-field loci are olotted,

respectively, in Figure (4a,b,c) with the "virtual-surface" radius (rx = .35R)

shown b, the dotted circle. Notice the re.ersed direction of m leadinq to

"surface" maqnetic Poles near r-rX . Notice too, that p(r/R -- .59) = 0. Aionn

with c,1nges in Q, larger values of BR4 will cause r to shrink; smaller values

to expand.

Synthesized. Maqrietostatic Resonances in a Nonuniformlv Biased Thin Disk Without
Conduc Li ng U'3u.Jr '

If the conductinq plates bounding the ferrite are either separated or remove.

entirely, the rf field inside the disk will fringe. Then field variations with

respect to z nay be important even for the q,,asi-two-dimensioral modes, as the

outer and inner fields interact aloni the entire disk surface. If the ferrite

is comparatively thizk, z-variations in both idc' and hence X , will occur and

mode localization effects due to these veitic.al gradients can be expected.
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When the disk is thin, the gradients weak to moderate, so that the modes

in questi:'.n do not have "virtual-,urfacr, anothrr firi-, of ana!Jri, i

convenient. We here review that alternate approach.
11

The complex mgnetostatic potential within the ferrite is approximately

given by C)=R(r)e jm  where r and ,, are cylindrical coordinates the factor e'

is again suppressed and m is a positive mode integer.

We again choose to work with dc fields and frequencies that are normalized

to the saturation magnetization M of the material. However, we now aeneralize

the dc bias to be

N 2n
Hz/M = Z(r) = A + Z B r (16nn

n= 1

In terms of circularly-polarized small-signal magnetization vectors

m-= m+(rejm (17a,b)

- r-

and their associated scalar susceptibilities x- - I/7-s2 the equation 7.Q=O

and VxF=O become

V . [(l+Z-Q)m+ +(+Z+6),i] 0 (18a)

V x L (Z-,)1_11 + + - I (i ;b)

Because the field gradients are assumed to he modest, the mode frequencies

for I ow order m will satisfy IZ-Q I <<1 and n - will be small. Therefore i+ is

expected to be approximately Laplacian in character and, in fact, detailed

perturbation analysis reveals that when !m_/m+!<<l the associated potential

inside the spheroid is

i - N N r?nl(a)mij (19)
0 n n 411 - 'a

whereas outside it, the potential satisfies Laplace's Equation. Both and the

the nonndl component of F are continanus at the boundar','.



The anpl ication of the boundary condition over the boundary sur face

is straiqht-forward, but calculation of bib involves evaluation of

Fortunately, there is an alternate way to oroceed that circumvents this

difficulty; we calculate the dominant contribution to the far field potential

from our knowledne of the form of m inside the spheroid and match it to the

asnDtotic value of y0 . The net result is that a mode exists whenever

Q A12 (Ca2 + (B2 a4 + 1 6

a 1 +3/2 +3 2 +-- 2 i+3/2 + ... )))..) (20)

m

where

m+l (m)
( ) Fm  ()

I N(i) b c n (21)
a 

(21) 2"

an F(2inl)! sin - [(2m-2)!! +(2inl)(2m-4)!!? 2

Fm~m){c) 2m2--2 ' inl )"

+ (2'il)(2 (?m-6) - + .+ (211),1 2m - 2 ]

where n! n(n-2)(n-4)...

which both V'm-O and b/a-'0.

In such cases, retaininq terms in hf that are first-order in k0
2 , leads to

d modiFication of the normalized frequencies t. that can be incorporated by

letting

(k0 a)
2

N(m) • (m) - 2mnl)

As expected, this correction is lacjest for m=l.
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Synthesi;zed Dispersion PolaLions,

If it is desired to create a spectrum with the resonance frequencies

separated by pre-specified amounts or if one wishes to control the velocity

of energy circulation vE of individual modes, the independent constants B

can be adjusted and the required field 1 z(r) synthesized. In the for-ier can e,

Eq. (27) is used alone whereas in the latter, the relation "F(;) r (r-)/'

(analaqous to the group velocity for a plane wave) is also erinloved.

It is useful to realize that v can be forced to be independent of m over

some ranqe of m. This also suqqests that maqnetostatic plane wave lpropaqation

can be made precisely nondispersive over a predetermined bandwidth.

Control of vqE not only affects the group delay of signals propaqatinq thronuo.

the mode but also the total energy, E, of the mode in terns of the siqnal power

P The coverning relationship is E=2.rP /v. The important point to be

realized is that the normallY slow energy circulation that occurs when B =0 can

either be speeded up or slowed down. In the latter event, the dirction of ,iet

power flow can even be reversed. Near the balance tnoint where V 0, E becomes

very large, for a fixed value of P . Because nonlinear behavior, due to

vri-rmctric spin ave instabilities occrs ',en the enrq' de tY o- t-

mode reaches a critical value, it follows that the threshold nok-'er of limitiun

level should be gradient controllable.

Consider two examples in which both koa and N(m) are negligible.

In the first, we require that B1 and 132 force ? /:m- for ml and .01 for

m=2. The required values are

2 4
Bla = -.267 B2a = .344

In the second, we require that E' B 2 and B3 force Q/Om-.Ol for m-l and 0

for m=2 and m=3.

The required valucs are

2 4- 6B1 a m .477 R2 -I.121 53 a .739
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In Figures (5a,b) and 6a,b) the values of P(m) and M/Dm are plotted vs.

m for the two cases; in Fiqures (5c) and (6c) the required field profiles of

Z-A are plotted vs. r/a.

Field Synthesis

In order to normally maqnetize a very thin disk of maqnetization M so as

to produce within it the normalized field Hz-M = A+Br2n, we first create the

free space dc magnetic potential.

^ +n n!4n

C, 0 O + (A+l)Mz + (-l ( (2n-+ BMP* 2n+l(r,z) (23)

where P*(r,z) = (z2+r 2)n/2 Pn(Cose), tanO = r/z and Pn is the associatedn n n
Legendre function of degree n and order zero. These polynomial satisfy the

recurrence formula

p, = 2n-1 z n-I (z1)2 (24)
n n P*n-l n n 2

with P*=I
0

The field associated with 4' can he generated utilizing high permeability

pole-pieces desiqned to follow suitable equipotentials for Eq. 23.

If the thin disk is located at the plane z=O, and centered at r=O, the

boundary conditions will be matched (neglectinq fringing at the rim) and the

required Z(r) generated inside the disk. Notice that through the use of super-

position, any field of the form Hz(r) =  E an r2n can be synthesized.
14

n=O

Magnetostatic Modes and Waves in Films with Nonuniform In-Plane Bias

The analysis of three-dimensional modes in films with nonuniform in-plane

bias by means of a coupled integral equation approach will be presented at the

1980 Conference on Magnetism and Magnetic Materials.
1 5

The prospect of guiding magnetostatic waves is of considerable interest

because of possible device applications. 16 Such nuided waves might be used to

increase the delay time realizable on a given size sample by meadering the palh,
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or to make a resonator by quidinq the waves alonq a closed loop. In addition,

controlling the coupling between adjacent waveguides could make possibie siq,oi

routino devices such as directional couplers.

Guidinq such a wave is complicated by the fact that MSSW propanation is

only possible in one direction on a given surface when the applied in-nlane

bias field is uniform; 17 turns of 900 would normally require conversion to back-

ward volume waves.

It should be possible to overcome this difficulty by employin] gradients

that arise from a change in the direction of the bias field. As an example,

consider a YIG film that is covered with perrialloy containing a slot of controlled

width. If the permalloy is at a different magnetostatic potential on either

side of the slot, the dc magnetic field will be parallel to the film in the

region underneath the slot but normal to the film surface in those portions

directly underneath the permalloy.

The in-plane fields permit magnetostatic surface wave propagation; the

normal fields do not . Therefore the surface wave energy should he localized

under the air-filled slot rather than under the condiicting permallov; eddv

current dissipation is thereby minimized.

Notice also, that if the entire bias field is normally directed, the surface

wave disappears completely. Taken together, these factors should allow novel

control of the surface wave channel.

We here review Stancil's experimental observations6 of MSSW propagation in

a rectangular YIG film centered in the slot between strips of hioh permeability

metal foil. The results indicate that surface waves can propagate in such a

geometry but with modified dispersion characteristics, as expected.

The aeometry of the experiment to be described is shown in Fig. (7). The

sample is a 4.5 micron thick film of YIG approximately .28 cm wide and 1.09 cm

long. The fine wire antennas are 50 microns wide and separated by 1 cm.
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The results of the experiments can be summarized as follows:

1. As the qradient is increased, hy decreasinq the space d between the

permalloy strips, a series of discrete modes appears on the low frequency side

of the MSSW band. This behavior is illustrated in Figure 8.

2. Reversing the polarity of the bias field results in sl ghtly reducing

coupling to both the continuous and discrete modes implying that these modes

have a nonreciprocal surface localization similar to conventional MSSW's.

3. Although the discrete modes show evidence of nonreciprocal surface

localization, they appear at frequencies below the bottom of the surface wave

band at the center of the film as calculated from the corrected fields at y=x=O.

The arrows shown in Fiq. 8 indicate the bottom of the MSSW band for each d as

calculated in this way.

4. The slope of the phase was used to calculate approximate group velocitic.

The discrete modes propagate several times faster than the normal MSSW modes.
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F i qu re Cptions

Figure 1. Experimental confiquration (a) partially exploded view
(b) cross-sectional view

Figure 2. Microwave couplinq between two antennas as a function of frequency.
Antennas located alonq the crystal center line with Hdc = 2300 Oe.

Figure 3. Coupling between antennas as a function of crystal position with
frequency = 2.46 GHz and Hdc = 2300 Oe.

Figure 4. Locus of field lines for the "virtual surface" mode !(m=l) ..655

when Z = .3+1.095 (r/R) 4 . The rf m-field is shown in (a) the
K-field in (b) and the b-field in (c). All patterns rotate at the
normalized frequency s2. The "virtual-surface" (shown dotted) occurs
at rx/R = .385 .

Figure 5. The normalized mode frequency (a) and pre-specified energy frequency
(b) both plotted vs. mode number toqether with the required field
profile (c) plotted vs. radius.

Figure 6. The normalized mode frequency (a) and pre-specified energy frequency
(b) both plotted vs. node number toqether with the required field
profile (c) pintted vs. radius.

Figure 7. Basic experinental confiquration.

Figure 8. MSSW transmission spectra as a function of the spacing between the
permalloy strips. The fine structure near the high frequency end
is due to interference with the EM feedthrouqh.
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(a T-f ield locus (b) hi-field locus

(c) B-field locus

Figure 4
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Effects of Exchange in Nonuniform Fields

I. Introduction

In this Chapter we will

discuss how nonuniform fields along with the exchange interaction can

localize volume wave excitations in a normally magnetized thin film between

conducting plates. Although the presence of the conducting plates is

undesirable from an experimental point of view, a significant mathematical

simplification results which in some cases allows closed form solutions to

be obtained. These solutions give insight into the role of exchange in the

localization of magnetostatic waves with nonuniform fields.

The simplest field nonuniformity is, of course, that of a

one-dimensional linear profile. Such a profile has been used to synthesize

linear delay-vs.-frequency characteristics in single crystal YIG rods (29).

In this Chapter we discuss the possibility of a similar application of

linear profiles in thin ferrite films. Also, since an arbitrary

one-dimensional profile can always be linearized in a small region about a

point of interest, the understanding gai.,ed from the study of a linear

profile has very wide applications.

A profile which could be used in signal routing applications is the

one-dimensional quadratic profile. We will show that a magnetostatic wave

can be confined by such a profile and made to propagate along the direction
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transverse to the gradient, much as water is guided by a trough.

Third, we will show that a magnetostatic mode can be totally confined

by a two-dimensional quadratic field profile. Such a confined mode, or

resonance, could form the basis of a tunable microwave filter.

As a bonus, the calculations predict the existence of a continuum of

spin wave modes at frequencies above the top of the volume wave manifold

confirming an earlier theory described by Eshbach (30) based on a

quasi-uniform plane wave approach.

Although we have motivated the study of these particular profiles using

possible device applications, we should point out that the primary value in

the solutions to be described is in understanding the role of exchange in

nonuniform fields; it is doubtful that modes dominated by exchange will be

of great practical interest due to high propagation losses. It seems

certain, however, that analogous mode confinement will result if the wave

dispersion is dominated instead by the dipolar interaction. This would be

the case in the more practical geometry of a ferrite slab without

conducting plates.

Although the present study was begun because of questions raised by the

virtual surface theory (12,15), our geometry differs from that of

Morgenthaler's in one important respect. The properties of the virtual

surface modes depend crucially on the boundary conditions at the edges of a

finite width or diameter thin film. In our geometry the film is of

infinite extent in the plane; hence edge effects are completely neglected.

It is clear that the modes obtained by the two methods will not in general
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be in one-to-one correspondence. However, it will in some cases be

possible to draw connections between the two theories, and these will be

stressed where appropriate.

11. Expansion in Normal Modes of the Magnetization

It is well known that the linearized torque equation reduces to a

Schrodinger equation when dipolar interactions are neglected (31). When

solutions tco this are known, it is sometimes possible to construct a set of

basis vector-functions from which solutions to Maxwell's equations in the

magnetostatic limit can be constructed. We construct a set of basis

vector-functions in a manner similar to that used by Vendik, et al.

(17,18).

The geometry considered is that of a thin sheet of ferrite between

perfectly conducting plates (Figure 2.1). The ferrite is assumed to be

unbounded in the x and y directions. The material is magnetized by an H

field whose only component is in the z direction but which has some

arbitrary variation along x and y. This is strictly not allowed by the

requirement V x H 0 0, but can be a reasonable approximation if the

thickness is sufficiently small. Although the applied field is nonuniform,

the material is assumed to be saturated everywhere. The presence of the

conducting plates allows us to consider fields which depend only on x and

y. All fields depend on time through the factor exp(-iwt).

As shown in Appendix A, the linearized equation of motion for the

magnetization can be written

h - Aop'm (2.1)
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where

Z - ex7t 2 i lAop =  
U e 7t2

Vt 2 . a2 + )2

x2  7 2

S1 W , Z Hoeff/ M.

-Yuois

is the rf magnetic field, Hoeff is the total effective dc magnetic field,

Ms is the saturation magnetization, Xex is a phenomenological exchange

constant, and y is the gyromagnetic ratio (negative).

Suppose that the eigenvectors and eigenvalues of ;op exist and are

known; i.e., assume the equation

Aop-S - aX t (2.2)

has been solved. Since ;op is Hermitian, the eigenvalues (at) will be

real.

Let us assume that the magnetization can be expanded in terms of these

eigenvectors (the success-or failure-oi the method will determine the

validity of this assumption). The magnetization can then be written

m cETZ (2.3)
£



The magnetic field can now be obtained easily from m in this

representation:

h"- -.  (2.4)

We can now substitute (2.4) into Maxwell's equations in the

magnetostatic limit and look for the coefficients (c) and eigenvalues (at)

such that the equations are satisfied.

Having outlined our approach, let us return to the eigenvalue problem

(2.2).

Note that ;,, can be written as the sum of a scalar operator and a

matrix operator

;op - (Z - XexVt 2 )7 + 1 i 1 (2.5a)
110

Ap . Rop + +. aop (2.5b)

where Rop acts on the space of arbitrary functions of x and y and ;op acts

on the space of two-dimensional complex vectors. As a trial form for the

eigenvectors, let us consider

St - f(xy)p (2.6)

where f(x,y) is an eigenfunction in the space of Rop given by

Ro p E(x,y) a 0 f(xy) (2.7)

and p is an eigenvector in the space of Pop given by
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Pop -p-0 p (2.8)

(The reason for the minus sign will be discussed shortly.) The eigenvalue

equation (2.2) becomes

;op •SL - (Rop I + 9 Pop)f(x,y) p

- p Rop f(x,y) + Q f(x,y) Pop p

- (p - a a) f(x,y) p

- (p - a a) St (2.9)

which implies at = p - 0 a. The problem therefore reduces to solving the

two eigenvalue equations (2.7) and (2.8).

Equation (2.8) is readily solved and the solutions are

a±1. (2.10O)

We have been .ssuming that the subscript A on the eigenveccor S£ is a

general counting index which ranges over all possible eigenvectors. At

this point it is advantageous to modify the notation slightly and to

substitute the subscripts n and a. It is understood that n ranges over the

solutions to (2.7) and a ranges over the solutions to (2.8). Rence

Scit = cna S 0 (211
n,o



The vectors Pa are the polarization eigenvectors of the magnetization.

The vector p+l corresponds to right-hand circular polarization (thumb in

the z direction) and p-1 corresponds to left-hand circular polarization.

The choice of the minus sign in equation (2.8) establishes the convention

that a - +1 corresponds to resonant precession (RCP) of the magnetization.

We now turn our consideration to (2.7). We have

(Z - Xex Vt') fn(x,y) - Pn fn(x,y)

which can be written

Vt2 fn(x,Y) + 1 (Pn - Z(x,y)] fn(x,y) = 0 (2.12)
Xex

Solutions to this Schrodinger equation will be discussed in the following

sections.

The eigenvector-functions (Sno) discussed in this Section can be

thought of as the normal modes of the magnetization or spin wave modes

(17).

Note that if Z(x,y) were a constant, (2.12) would be a simple wave

equation. If the dimensions of a finite sample were taken into account,

only waves with certain discrete wavevectors would be allowed. This was,

in fact, the case in the problems discussed by Vendik and Chartorizhskii,

and would also be the case if this method were used to describe the Walker

modes (69) of a uniformly magnetized sphere. If the sample were infinite

but the field were nonuniform, the wavevectors could still be required to

be discrete just as the energy levels of a quantum mechanical harmonic
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oscillator are discrete. In this manner we shall see that the gradient

can confine a mode even in the absence of boundaries.

III. Magnetostatic Waves Guided by One-dimensional Bias Field Profiles

A. General Formalism

In this section we will assume that the bias field is given by a

function of x only and that fn(x,y) is of the form

fn(x,y) - *n(x) eisY (2.13)

Equation (2.12) becomes

32 n(x) + O(Pn - Xex 82 - Z(x)] On(x) - 0 (2.14)
ax2  Aex

For the moment we will assume this equaion has been solved and consider the

constraints imposed by Maxwell's equations when taken in the magnetostatic

limit. These equations are given by

7t x h - 0 (2.15a)

Vt * (m + h) - 0. (2.15b)

The magnetization is given by

m [ on(x) eilY PC (2.16)
n, a

from which h is easily obtained:

h= ano Cna *n(x) eisy (2.17)

I



The x and y components of m and h can be obtained with the aid of

equation (2.10):

1

mx " -- cna n(x) eilY (2.18a)
V2n,a

MY I a cna *n(x) ei8y (2.18b)
FTn,aI

hx  - ano cna n(x) eisY (2.19a)

i

h y - an cna On(x) eiBY (2.19b)

The curl equation (2.15a) requires

ahy - ahx . 0 (2.20)
x Y

which becomes

I [ano cna (a0*n - 0n)] a 0 (2.21)
n,a X

In a similar way the divergence equation (2.15b) requires

-(m x + h x) + .(m + h a (2.22)ax y y

which becomes

I 1(1 +anao) cnon -6a a l -0 (2.23)
n,a Ix
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B. Solutions for S = 0

A significant simplification occurs for the limiting case B - 0 (this

is the cutoff condition for propagation in the y direction). Since the

derivatives in (2.21) and (2.23) cannot vanish for all x (except in the

trivial case), we have the conditions

ano cno a w 0 (2.24a)
na

1 (1 + ano) cna - 0 (2.24b)
n,a

for each n. Expanding the summation in (2.24a) gives the relation

Cn+ = an- (2.25)

where the subscripts ± are shorthand for a - ±1. Substituting this into

(2.24b) and making use of the expression for ana in (2.9) gives

Qn2 - pn (Pn + 1) (2.26)

where Pn is the nth eigenvalue of the equation (cf. equation (2.14))

32 n + 1 (Pn - Z(x)) On = 0 (2.27)

" XZ  Tex

Note that if we can find a solution to (2.27) for a given Z(x) we have

found an exact solution to the magnetostatic wave problem for the case

= 0. In such a case the frequency is given by (2.26), the polarization

of the magnetization by (2.25) and h and -m are determined to within an

I
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arbitrary constant by (2.16) and (2.17) evaluated for 6 - 0.

C. Linear Bias Field Profile

Consider the following normalized bias field profile:

Z(x) - Zo + B x. (2.28)

In the calculations which follow, we consider only the case 8 - 0 for

simplicity. Equation (2.27) becomes

a2on + 1 (on - Zo - B x) On - 0 (2.29)
7x ex

Let us make the following change of variables

x - a g - (Zo + On)/ B (2.30)

where a is a characteristic length to be determined and E is a

dimensionless variable. Upon this substitution (2.29) becomes

32On(n) - B a3  n() - 0 (2.31)

'Y 2 Xex

We can now choose the characteristic length (a) so as to simplify the

equation. We therefore choose

a ex/ B)1/3  (2.32)

which gives

a2 -O n 0n() . (2.33)
r& 2

The solutions to this equation are the Airy functions Ai(&) and Bi(M).

If we were considering a general boundary value problem, a linear

combination of both functions dould be necessary. However, for the present
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infinite medium problem only Ai( ) is permitted1 . The solution in terms of

x is given by

*(x) - Ai(x/a + (Zo - o)/Ba). (2.34)

The subscript n is no longer necessary since only one solution is being

considered.

According to Morgenthaler (15), the "virtual surface" in the absence of

exchange would be located at the point of inflection -- 0 of the Airy

function Ai(M). The location of the virtual surface, or turning point, in

the x coordinate is then given by equation (2.30):

Xtp - (p - Zo)/B (2.35)

where the subscript "tp" refers to the turning point. The frequency is

given by

92 - (B xtp + Zo)(B Xtp + Zo + 1); B Xtp > -Zo (2.36)

which, when Xtp - 0, reduces to

Q2 - Zo (Zo + L) (2.37)

which is the same frequency obtained by Horgenthaler (15). Although the

present mode does not have precisely the same functional form as a virtual

surface mode corrected to include exchange, we see that both theories

predict that the turning point occurs at the position where the field

places the frequency at the top of the volume wave manifold, which is where

the virtual surface occurs in the absence of exchange. (These results are

'Strictly speaking, our assumptions of a linear bias field profile, an

infinite medium and saturation of the magnetization throughout the material
are not selfconsistent; there will be some negative x for which the field
is not strong enough to saturate the magnetization. We can imagine,
hovever, that the material is terminated with a perfectly absorbing
boundary at some negative x at which the magnetization is still saturated.
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also in exact agreement with those of Eshbach (30) even though he only

considered dipolar effects in an approximate way.)

Note that in the present case P can assume a continuum of values each

corresponding to a different location of the turning point.

This solution can be thought of as a standing wave resulting from a

spin wave incident from the left and being totally reflected at the turning

point. Equation (2.36) indicates that the higher the frequency of the

wave, the further it can penetrate into the material. This can be

understood qualitatively through a consideration of the strong field limit

(B xtp + Zo >> I) from the quasi-particle viewpoint. In this case,

equation (2.36) states that the magnon is reflected from the point at which

the strength of the potential energy barrier (m B x + Zo) is equal to the

energy of the magnon (- Q).

The possibility that different frequency components may be reflected at

different depths into the crystal suggests that a linearly dispersive delay

line could be made usign this principle. A major problem with building

such a device would be coupling to the very high wavenumber spin waves

involved. Based upon earlier work by Strauss (32) and others, Platzker and

Morgenthaler (29) have described a linearly dispersive delay line using a

linear field profile in a YIG rod. Coupling to the high wavenumber spin

waves in their case was accomplished with a clever scheme making use of a

backward-wave region of the dispersion diagram (present as a result of the

boundary conditions involved) and phonon-magnon coupling. Perhaps a

similar scheme could be employed to
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fabricate such a delay line using thin films.

If the problem of coupling to these modes can be solved, their presence

might be directly confirmed using optical probing. The one-dimensional

standing wave pattern described above would appear as alternating stripes

of large and small cone angles. This could act as a diffraction pattern

for properly polarized and analyzed light passing perpendicularly through

the film (33,34).

We have mentioned that the standing wave pattern resulting from a

linear field profile would involve very short wavelength (high wavenumber)

spin waves. It is instructive to consider a numerical example.

For large negative arguments, the function Ai(-I&U) is approximately

i 2Ai1-~l) 1/4 sin [ 2 IE131 2 + w/4 ] (2.38)

Because of the [&13/2 in the argument, the period of the sinusoid will vary

with position. We can estimate the sinusoidal period near a position 'o in

the following way:

2(JEo + 6& 3 12 - 1&o 1 3 / 2 ) - 27
3

which gives A& = 2w//&o . But & - x/a, so

ax u 2v/- 3a 2i/ 2 x• (2.39)

x o  S Bxo

where xo is the distance from the "virtual surface." For a gradient such

that B - I cm- 1 and assuming Xex = 3 x 10- 12 cm 2 , the wavelength I cm from

the virtual surface is approximately 0.11 Um.
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D. Quadratic Bias Field Profile

I.Basis Eigenvector-Functions

We next consider a normalized field profile of the form

Z(x) - Zo + Bx
2  (2.40)

We begin by considering the problem of an arbitrary a. In this case

equation (2.14) becomes

32 0n(x) + 1 (On - X exa2 - Zo - Bx2 ) On(x) - 0 . (2.41)
Zx ex

As in the linear profile case, it is desirable to express this equation in

natural units. We do this by making the change of variable

x = ao & (2.42)

where ao is a characteristic length to be determined and is a

dimensionless parameter. Equation (2.41) becomes

32 On() + [ a°2 (2 n - Zo - ex$2) - B ao4 -2 j On( 0. (2.43)

) & ex ex*

It is now clear that we should choose

ao . Xex / B (2.44)

which gives

a2'n + (on - Zo - exBZ ) _ 2 *n = 0. (2.45)T2 1 S 1 -n-0
ex

The solutions to this equation can be immediately obtained by noting

that itr is of the same form as the one-dimensional harmonic oscillator

!The units of the generic gradient parameter, B, vary but should be
apparent from the context (cf. equations (2.28) and (2.40)).
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equation

a32  + (2c - &2) --0 (2.46)

Acceptable solutions to this equation exist only for discrete eigenvalues

which are

e - a + 1/2, n -0, 1 . . . (2.47)

Identifying terms between equations (2.45) and (2.46) gives

n - (2n + I)-ieX + Zo + Xex
S2  (2.48)

or

anoa - (2n + )/B + Zo + Aex0 2 - a, -±. (2.49)

The solutions to (2.45) are the Hermite-Gaussian functions

ICHn • (2.50a)(2 n n! vr- 7-)/2

or

n (x) Hn(x/Qo) e- x2 /2 L.2 (25b
H. x% 2 /~2(2.50b)
(ao 2n n! 7v)1

/2

where Hn(M) is the nth order Hermite polynomial (see Appendix B).

Combining (2.6), (2.10),(2.13) and (2.50b) gives

Sn = n(x) eiaY (2.51)

Using the orthogonality properties of n(x) (see Appendix B) it is

straightforward to show that these vector-functions are orthonormal:

0 ,

(SjS )~2 -§ 10 . T S 202 dx . S n~26Ola2 (2.52)
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2. General Solutions

Using equation (B.13) for the derivative of *n(x) allows us to write

11axwell's equations (2.21) and (2.23) as

{ a c [On- / + 1 - an0 c n (2.53)
o n-o o 22

1 (1+anO) cna *n-i/T - n+/ I+

- 8 a ( + ana) Cno n -0 (2.54)

Finding the coefficients (Cna) and the frequencies (n) which satisfy these

two equations will give the general solutions for the problem. It is

useful, however, to consider approximate solutions constructed with only

the first m + I eigenfunctions. The summations in (2.53) and (2.54) can

then be reordered to give

M-I

I 1 ln..l,a Cni,o =+ - a an-1,a cnil,aa n-0 C 2 o /1

- 8 ana cna I *n

- y[ a a., 0 cm.-i,a / + a a30 C3 0 ] *3

a at0
/
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M-1
[(l + an+l o) Cn+,3 _- (1 + an-lc) cnl,a

an-0 ao 2 o /2

- a a (1 + an) Cn n

_ [(1+ an-la) cro/a - + B a(1 + am0 ) cii I Om
a ao/2

Z (1 + ama) cma * Om+l 0 (2.56)
a ao  / 2

In order to satisfy these truncated equations exactly, the coefficient of

each On must vanish because of orthogonality giving a total of 2m + 4

equations. However, there are only 2m + 2 unknowns so that in general the

equations cannot be satisfied exactly. To pursue this approach further

either of the following procedures can be attempted.

a. Minimize the space average of the equations.

Instead of requiring (2.55) and (2.56) to vanish everywhere, we can try

to minimize the average of their absolute squares or absolute values over

all space. The equations so obtained would, of course, be nonlinear. In

addition, although we constrain Qn to be real, the cna coefficients may be

complex resulting in a search for minima in a 4m + 3 dimensional space!

b. Satisfy the equations exactly at a finite number of points.

Alternatively, we can require the equations to be satisfied at 2m + 2

points. Although this method results in a set of simultaneous linear

equations, it is not clear which points we should choose in order to
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optimize the solution.

Because of these difficulties, we will not consider the general

solution further. Instead, we will examine these equations for several

limiting cases in which significant simplifications occur. The case

for 8 - 0 has been mentioned already. In addition, the weak gradient

(Bnex _.x >> I ) limits will be examined.

3. Solutions for 8 a 0

Using the results of Section III.B we can immediately write down

solutions for B - 0. There is a solution for each n given by

-a I + cn- I (2.57a)8-0 8=0

hn " an+ cn+ Sn+ 1 + an- cn- n -Sn - I (2.57b)

where the polarization of the magnetization is

Cn+ . an- ,(2.25)

an± - (2n + 1)/ B)ex + Zo ; , (2.58)

and the frequency of the nth mode is given by

,'n- [(2n+l)/Bex + Zol[(2n+l)VBex +0 + (2.59)

Note in this case that although the magnetization is elliptically

polarized, the small signalh field is linearly polarized in the x

direction (this can be seen by separating (2.57) into x and y components

and substituting (2.25) in for the coefficients cno).
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It is worth noting that localized non-propagating resonances have been

observed in tangentially magnetized thin films (35,36). In such cases it

has been proposed (36) that the inhomogeneity in the saturation

magnetization near the interface between the gadolinium gallium garnet and

yttrium iron garnet could give rise to an effective "potential well" having

one bound state. Although the present analysis deals with an inhomogeneous

magnetic field rather than magnetization, the two problems appear to be

very closely related.

There are an unlimited number of modes in the present case, however,

since we have assumed an infinite paraboloidal bias field profile. It is

of interest to examine (2.59) in order to get an idea of the frequency

separation of these modes. Expanding (2.59) to first order in / -Bex gives

Qn - V!o(Zo+l) + (2n+l)(2Zo+l)/BAex (2.60)

2v( Z (Z +1)"0 0

Using the parameter values (10) of Zo a .78, B = 13 cm- 2 , Xex = 3xlO - 12 cm2

gives

A= - Qn+I - Qn = 1.4x10-5 .

This is at least an order of magnitude smaller than the line-width of the

best materials so that it should not be possible to experimentally resolve

individual resonances. Instead, they should manifest themselves as a

quasi-continuous absorption or transmission band immediately above the

volume wave manifold.

It is instructive to find the locations of virtual surfaces for these

modes as we did in the case of the linear profile. Using the definition of
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mo given by equation (2.44), the mode frequencies can be written

an - [(2n+I)Bmo2 + Zo][(2n+l)Bo 2  + + 1] (2.61)

The frequency which would locate a virtual surface at a position x is given

by

Q2(x) - Z(x)(Z(x)+1]

or Q2 (x) - [Z0 + Bx
2 ][Zo + Bx2 + 1] (2.62)

Given the frequency of the nth mode from (2.61), the location of the

virtual surface can be obtained from (2.62). Clearly the expressions are

equal when (2n+l)ao2 . x2 , or

- x/ao . -2n+l (2.63)

But this is simply the location of the turning point of the nth

Hermite-Gaussian function (see Appendix B). Thus we find, as before with

the linear profile, that the location of the virtual surface is coincident

with the turning point when exchange is included.

The previous analysis of propagation in a linear gradient also showed

that the location of the turning point could be varied continuously by

changing the frequency. The higher the frequency, the further into the

gradien, the wave could penetrate. Said in another way, the spectrum for

these waves is not a single resonance but a continuum. The situation in

the case of a parabolic profile is very similar. In this case, however,

there are two turning points symmetrically located about the center of the

well. The additional requirement made by this geometry is that the

osscillations must be continuous at the center. This requirement splits
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the continuum into a series of resonances which, as we have seen, are

very closely spaced for commonly realized gradients. The result is again a

quasi-continuous mode spectum. We shall see that this is a characteristic

of essentially all of the modes accessible with the present formalism.

Such a spin wave continuum was first discussed and observed by Eshbach

(30). Eshbach (30) also was first to discuss the behavior of spin waves in

linear and quadratic field profiles, although he did not solve for analytic

solutions which also satisfy Maxwell's equations in the magnetostatic limit

as presented here.

Finally, let us consider the spatial localization for the present

example. The characteristic length is given by

ao - (Xex/B) I/' = 7 um.

Thus we find that the modes near the top of the manifold are very highly

localized.

4. Strong Gradient Limit, /BAex >> I

We have already seen that a relatively small gradient can give rise to

a highly localized resonance. For very strong gradients we can imagine

that the localization would be such that the exchange interaction would

completely dominate the resonance and the dipolar interactions could be

neglected. In this case equation (2.4) gives

I ana cna na 0 0. (2.64)
n,0

If all of the cna's vanished, then so would the magnetization and we would

have the null solution. Since we have assumed VBex >> 1, all of the
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ana's cannot simultaneously vanish-even in an approximate sense-but they

can vanish individually. From (2.49) we see that for Q. > 0 only the

eigenvalues an0 for a - +1 (resonant precession) can vanish. We conclude

that each of the vectors Sn+ represents a solution with the frequency

an - (2n+l)VB--ex + Zo + Xex8 2 . (2.65)

The magnetization for each mode is right hand circularly polarized.

5. Weak Gradient Limit, i- << I

Because of the small size of Xex' the assumption that VBe x <<I is

well satisfied in most experimental situations. In this approximation the

fact that adjacent ana's are degenerate introduces a redundancy which

reduces the 2m + 4 equations of Section III.D.2 to an effective set of

2m + 2 which can be solved exactly.

Expanding equations (2.55) and (2.56) for an arbitrary m quickly

becomes cumbersome, so let us first consider a graphical representation of

the equations which can quickly give us some insight into which and how

many eigenfunctions are needed in order to construct a solution. A more

rigorous treatment of this method is given in Appendix C.

Consider a representation of the curl equation

Thy - ahx - 0 (2.20)
x ay

illustrated in Figure 2.2(a). The indices of the Hermite-Gaussian

functions we would like to include in a trial solution are listed in the

far left and right columns as terms in hx and hy, respectively. The



-105-

hx  3/ay 3/ax hy

0 0 0. 0

1 + 1 0,2 1

(a) 7 x - 0

bx  a/ax 3/y by

0 + 100

I + 0,72 1I

(b) V b - 0

Figure 2.2. Diagrams representing Maxwell's
curl and divergence equations.

Sa
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indices of terms resulting after taking the appropriate derivatives are

listed in the inner two columns. By assumption, taking a derivative with

respect to y simply gives the same function times a constant (iS), whereas

taking an x derivative gives two terms with raised and lowered indices

according to equation (B.13).

Equation (2.20) says that the algebraic sum of all of the terms

represented in the inner two columns must vanish. Orthogonality of the

functions $n(x) further requires that the sum of all terms with a given

index must vanish. Thus the oval enclosing the terms representing n - 1

indicates that the difference between these two terms must vanish. Note

that there is only one term with n = 2 so that its coefficient must vanish.

This requires all of the elements enclosed by the rectangular box to vanish

since they are all related through non-zero constants. This leaves only

one n = 0 term so its coefficient must also identically vanish. A similar

diagram can be constructed for the V • b = 0 equation as shown in Figure

2.2(b).

These diagrams indicate that a solution may exist when hx a Ol and

hy - Oo" If, on the other hand, all of the terms in both hx and hy were

required to vanish (as symbolized by enclosing all terms with rectangular

boxes), there would be no nontrivial solution for the particular set of

On's included.

We have said that the diagrams of Figure 2.2 may represent a solution.

Experience indicates that solutions will exist only under the following

conditions:
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1. The eigenvalues (ano) of all included eigenvector-functions (Sna)

must be degenerate in n.

2. The fields in the curl (or divergence) diagram must not identically

vanish.

In the present case, both conditions are satisfied since YBe x <<I. We

conclude that the diagrams of Figure 2.2 do indeed represent a solution.

Before actually calculating the fields for this solution, it is useful

to consider a slightly more general case. Let us begin by considering the

nth eigenfunction and attempt to construct a solution by adding adjacent

eigenfunctions one by one. The diagrams of Figure 2.3 result. Clearly, a

solution exists if three consecutive eigenfunctions are included.

We will now calculate the field quantities for this mode. From (2.18)

and (2.19) the coefficients which are required to vanish by the rectangular

boxes in parts (c) and (d) of Figure 2.3 give

cn- I + an-l,- (2.66a)
n-,- an-,+

cn+ an- (2.66b)

c_____ = (2.66c)
On+l,- an+l,+

and

cn-l,+ - - (0 + an-l,_) (2.67a)
Cn-l,- 0l + an,+)

(n+ 0 + an-) (2.67b)

n- + an+)

Cn+1 - (0 + an+__) (2.67c)
Cn+l,- (I + an+t,+)



n m n n-l,n+l n

(a)

n n n-1,n+l n

ri+I n+I n, n+2 4- n+1

(b)

n-I n- n*, n-I1

n+I 6 n+1 n,n+2+ l

(c)

n-I * n-2,n7 n-i n-I

n n- n , n+I l n f

n+1 n,n+2] n+I n+I

(d)

Figure 2.3. Constructing a solution around the nth eigenfunction.
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Equations (2.66) and (2.67) are consistent if

an-l a  ana an+l,a (2.68)

and an - (I+an-) (2.69)
X,+ (I+a+ + )

Equation (2.68) is satisfied if VBAx << 1, and equation (2.69) is

satisfied when

Q2 0n(0 n + 1) (2.70a)

where
Zo + Xex B 2  ; n small

O= (2.70h)
2nVB-ex + Zo + ex82  ; n large.

In order to find the relations between the coefficients of different n

we make the formal identifications i

4 .4 (2.7 1a)

(n/2)1/2 if index is decreased from n

3 - ((n I )/2 ) /2  if index is increased from n (2.71b)

ao

Requiring the differences between the circled terms in Figure 2.3(c) to

vanish gives

B cn-l, + g(an+an - / cn+ g(an+,an-) 0 (2.72a)

'The i normally obtained in (2.71a) is cancelled by the i which appears as
a coefficient of hy (cf. (2.19b)).



Scn+l,+ g(an+,an-) + 1 n g(an+,an_) - 0 (2.72b)

where g(an+,an-) is a common function of each term and can be divided out.

We obtain, finally:

Cn-l p+ I 1 in

Cn.4 tSao /2 (2.73a)

cn+l,+ - I n (2.73b)Cn+ Sao /E+

It is easily shown that under the condition /X << I equations (2.73)

also satisfy the remaining conditions of Figure 2.3(d).

Having obtained the frequency and the coefficients to within an

arbitrary constant we can now write down the fields. We have

rexn) CnI" f"n([, +nl + So"a l-a,L n  
n+ 1 [ l+±n-+]_

28o an- _ na n - n

(2.74a)

(n) icn+ {,n[ an+ + B /-[I + - ]

28% a n-I 0 =n n an- n+1

(2.74b)

h (n) .n-I nl (2.74c)

hy(n )  ic n+an+/2 *n (2.74d)

e. = c.n+wuo rlan±J (2.74e)
B/-2'T- n



where we have obtained the above approximation to the first order electric

field from the Maxwell equation

7 x e -ab (2.75)
at

Substituting n - 0 in the above equations allows us to obtain the

fields for the previously discussed example:

28n0 a..

(0) . ico+ SQIT[1+o+], -c[o+ao], 3 (2.76b)

h(°) - C°+a°+ 2 (2. 6c)

8ao

hy(O) - ico4 ao+/2 a (2.76d)

ez(0) .,- co+uo ao+j 0  (2.76e)

6/7 TO

Note that the net electromagnetic power flow in the y direction is zero

for all of the waves described by (2.74) because of the orthogonality of

the Hermite-Gaussian functions:

py(em) -Ref f(%ei )±ty dx
2

I

- f ezh dx2 .
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c f (X) n-J(X) dx + f *n(x)ni(x) dx

0 0. (2.77)

Thus the power flow in these modes is carried entirely by the exchange

channel. The resulting group velocity can be estimated by expanding

(2.70a) to lowest order in Aex$ 2 and taking the derivative with respect to

S. The result for n small is

2Zo + I
vg ___=____ +__) %ex 8  

(2.78)
I#zo(zo + 1)

It should also be pointed out that the waves described by equations

(2.74) are not all mutually orthogonal with respect to the inner product

(Fi,Fj) - f FFj dx

where Fi is any field quantity of the ith solution. The solution for n is

orthogonal to those for n-I and n+I, but it is not orthogonal to the

solutions for n+2 and n-2. Hence the modes for n-0 and n-l can be taken to

be the first two solutions of an orthogonal set, but solutions for n)3 must

be carefully constructed so as to be orthogonal to all lower solutions.
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IV. Magnetostatic Resonances Bound to Two-dimensional quadratic Bias Field

Profiles

A. Basis Eigenvector-functions

We would now like to consider normalized bias field profiles of the

form

Z(x,y) - Zo + BxX
2 + BYy2 . (2.79)

The eigenvalue equation (2.12) becomes

a2 + 1 [a + 9a - Z - B x 2 - B y2 ] = (2.80)

=a -a 7~ 0 x y

which is of the same form as the two-dimensional harmonic oscillator

equation. Following the usual procedure of separation of variables, the

solutions can be easily shown to be products of one-dimensional

Hermite-Gaussian functions (Appendix B). The eigenvalues are calculated to

be

an n a " VBxex (2 nx+l) + VByxex (2ny+l) + Zo - So . (2.81)

and the eigenvector-functions are given by

Snny a *n (x) fn (Y) (2.82)--xny 2- io y

where $n (x) and n (y) are properly normalized one-dimensional harmonic
x y

oscillator wavefunctions as defined by equation (2.50b). These

eigenvector-functions are orthonormal in the sense that
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f f dxdy fn n 0 -§ m ' (2.83)
-a .M xy x y

B. General Solutions

We assume that the eigenvector-functions (2.82) form a complete set so

that m and K can be expanded in terms of them. We can then write

m  Cnn a gn n a (2.84a)
nx,ny X Y x y

a

" an n a Cn n a Sn n o (2.84b)
nx, X y X y x y

a

The individual components of these fields are found to be

I

my a Cn n 0 n n (2.85a)
V-2 nx,ny X Y x Y

a

h i ocn na o n an (2.85b)
S/2 nx,ny X y X y

ah -- an n a Cn n a n n (2.86a)
V'-2 nxny x y X Y X Y

0

i
hy = - an n c , n n 0 * n @ (2.86b)

/nx,ny IC ICY X xY

a

Applying the curl equation (2.20) to (2.86) and using equation (B.13)

for the derivatives gives
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a c [ /nIla nxnyo nxn0 x yO yO[ n+1 fl y

1 ._ [* - yn - +1 ] 0 (2.87)a7 nxnya nxniyaon x [ny- - Oy+ y _
7%, Y 2

Similarly, the divergence equation (2.22) becomes

I I L 1 riax n a) C [n nx+ij
n ,ny a y /nxi

+ ia(l+anxnya)
Cnxnyonx y - ¢ny+1 /nv+]}- 0 (2.88)

If we wish to keep only a finite number of terms in these equations we

must specify precisely how we are going to count terms. In order to do

this, let us define a principle eigenfunction index n such that

n = nx + ny. (2.89)

We will truncate the series by keeping all of the terms (nx"ny) such that

nx + ny < n. Equations (2.87) and (2.88) can then be written

i a n a n n n a 4'n -1 n

'0nxo o .02 Y XY X
-{i anncn -

a n/ + an n acnno n +,na/=2 x y x y x y

y
--L an nyacn n a *n ny~ 1

-y - an n a ' n ,n +1 0 (2.90)

ayz /7 X yx xy



n n-n-l

n n _.i /Lx (I+ann a)n n a *n -In

X y2 x y xy

- ___ (1+an n a)cn n a Pn +1,n

Mx /2: X X X

+ ia /f-2 (l+anxny a)cin ya nxiny_-
ay

(1+anxnya)cnxn a Pn,n +1 0 (2.91)

where *na ny = n (x)n y(Y)"

The solution to the general problem would be obtained by finding the

coefficients, cn n a, and eigenvalues, an n which satisfy-or minimize
xy xy

in some sense-equations (2.90) and (2.91).

Fortunately, it is possible to find a set of solutions which exactly

satisfies these equations when Bx a By. These solutions, as well as a

number of approximate solutions, are discussed in the following sections.

C. Solutions for Bx = By

In order to avoid the complications of expanding equations (2.90) and

(2.91) without a good idea of how many and which terms to include, we will

first explore different combinations graphically using a straightforward

extension of the method discussed in Section III.D.5. The rules indicating

the existence of solutions generalized to the present case of a finite

number of two-dimensional Hermite-Gaussian functions are:
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1. The eigenvalues (an n a) of all included eigenvector-functions
xy

(Sn n ) must be degenerate in (nxny).

2. The fields in the curl (or divergence) diagram must not identically

vanish.

The first condition is met for all neighboring eigenvector-functions in the

weak gradient limit (/ Bi~ex <<1, i-x,y). It is also met for all

eigenvector-functions belonging to the same principle eigenfunction index

when Bx - By. This latter case is the one we will examine in this section.

The curl equation diagrams for the first four principle eigenfunction

indices are shown in Figure 2.4. It appears that no solutions are possible

for n even, but solutions do exist for n odd.

The fields can be obtained from the diagrams in a manner very similar

to the one-dimensional case discussed earlier. We first make the formal

identifications:

/In if index is decreased from nv,

av 2 
(2.92)

_ 1 /nv+l if index is increased from nv.

We must also remember that the y component of each field quantity has a

factor of i (this factor was cancelled by the i in /aB * iB in the

previous case).

Let us first consider the solution for n-1. The components of hx and

hy which are required tn vanish by Figure 2.4(b) imply



hx  a/ay a/ax hy

0010 00

(a) Fields vanish for n-O.

101 - 00,02 1D1 01

10 * 1 0,0 1

(b) A solution exists for n-1.

02 + 01,03 F12 - 02

I! + 10,12 01,21 - 11

120 - 21 1 10,30 - 20'

(c) Fields vanish for n-2.

133 +4204 03

12 + 11 3 =02,22 + 121

121 + 20 ,22 11 , 31 21

30 + 31 20,40 - 30

(d) A solution exists for n-3.

Figure 2.4. Curl Diagrams.
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Col+ - _ al- (2.93a)
Col- al+

clo+ al- (2.93b)
clo- al+

Referring to Figure 2.5, the components of bx and by which are required to

vanish give

Col+ = (l+al-) (2.94 a)
Col- (1+al+)

Clo+ . - (1+ai-) (2.94b)

Clo- (1+al+)

Equations (2.93) and (2.94) can be satisfied only if

Q12 - [4,r _B-ex + Zo][4V -x + + 11 (2.95)

where we have used

ano - 2/ BXex (n+l) + Zo - Qo (2.96)

and B - Bx = By.

Requiring the difference between the terms enclosed by the oval in

either the curl or divergence diagrams to vanish gives the relationship

between the (01) and (10) eigenfunctions. From the curl equation we have

_ c¢io+ g(al+,al_) + i col+ g(al+,al-) = 0

where g(al+,al-) is a function common to both terms. This equation

simplifies to

Cl°.+  1 (2.97)
Co l +
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bx a/ax a/ay by

01 1 100,02 Oil
ro *0 00o,20 11 + 10

(a) n-I

03 * 13 02,04 + 0

210,2 11 , 13 + 21

12 * 11 , 31 120,22 *12

30 2,40 31 + 30

(b) n-3

Figure 2.5. Divergence Diagrams
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We now have all of the information needed to write down the fields for the

solution. We have

Mx(l ) = co+ I-ll+1,ol + i[i+_±!+] 10  (2.98a)

MY(1 ico 1+ l[ 1+al+q,0 + ila-1+>J,}1 (2.98b)

f_ al- al-

hx() , icol+ / al+ *1o (2.98c)

h -y
( ) . ico /27 al+ *o1 (2.98d)

ez(l) - -iwu.2col+(l+al+)a ,oo (2.98e)

Spatial maps of the field strengths and polarizations of m and h are

presented in Figure 2.6. Note that h is linearly polarized.

Repeating this procedure for n-3 (see Figures 2.4(d) and 2.5(b)) we

obtain the following fields:

In _o3 0~1 3+ + ± ], 12 + _1.....'21 + i _ 3 ___30

(2.99a)

my( 3 ) . ico3{[1+a3+L 
3- + i-[t- 1

1 2
- +i.i[ i+oji, 2 1  + -  ]

-

/FT a3-. 3~ a3-~ (-i. a3-. 83-.

(2.99b)

hx(3) . i o3+V2 a3+ [ 012 + P30 J (2.99c)
730

iy (3) . ico3+/ a3+ 3 + 21 (2.99d)03 -3
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4

2 2

0 0 q6.

-20- ' 2 C, z ,Q, 0.

'0 a' '40

o 0 .

II

(a) (b)

ez

0 I 2 3
P 2 + )/2

(c)

Figure 2.6. Fields of the n-I solution in the presence of a z directed
bias field which is a symmetric paraboloid of revolution. (a) Relative

magnitude and polarization of m. The ellipses indicate the locus of points
traced by the tip of the small signal magnetization vector as it rotates
counterclockwise. (b) Relative magnitude and polarization of h.
(c) Relative magnitude of the z directed electric field (e.). Unlike m,
both h and e are linearly polarized.



ez( 3 ) - -iwuoCo3+ (I+a3+)a 2 3[ V-2 *0 + *02 + 20 J (2.99e)

and

a -[ 8' BAex + Zo][ 8V Bkex + Z. + 1 (2.100)

Spatial maps of the field strengths and polarizations for this solution are

shown in Figure 2.7.

In general, a solution can be constructed from the n+1

eigenvector-functions belonging to the principle eigenfuncrion index n when

n is odd. The nth solution has rotational symmetry about the z axis and

the magnetic field has (n+l)/2 radial nodes. The frequency of the nth

solution is given by

-a. zi 3-'g' (n+1) + Zo][ 2/ BAUex (n+1) + Z. + 1] (2.101)

D. Strong Gradient Limit, / B)ex >>

If the magnetic field gradient is so large that the exchange

interaction completely dominates the behavior of the magnetization, the

magnetization can be approximated by any of the eigenvector-functions which

can have a zero eigenvalue. The solutions are

Cn n n (X)$On (Y)( . 0 )

mny+ x y (2.102)

and the frequencies are given by

In n + / BxXex (2nx + 1) + / Bx ex (2ny + 1) + (2.103)



- -

o 3 a 1 - 3

o . .z ' " " !, ","

0,'% & 0 .1

0 0

(a) (b)
ez

0 1 2 3

(c)

Figure 2.7. Fields for n-3 solution. (a) Magnitude and polarization of m,
(b) Magnitude and polarization of J, (c) Magnitude of ez .
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Here, as in the one-dimensional field profile of Section III.D.3, the

magnetization of each mode is right hand circularly polarized.

It is interesting to note that when Bx and By differ slightly, the

spectrum of resonances given by equation (2.103) consists of a series of

multiplets qualitatively very similar to those observed by Cooley in a disk

(37). However, in order for the resonances to differ by only a few

megahertz for YIG (fm 2 5 GHz) we must have B7-ex  10- , or B 3(l05)

cm-2 . We conclude that although the qualitative behavior of equation

(2.103) is very suggestive, it is extremely unlikely that field gradients

of this magnitude existed in the experiment reported by Cooley! This

disagreement results in part from our neglect of surface magnetic poles

which in the magnetostatic modes of a disk, as in the Walker modes of a

sphere (69), play a dominant role in determining the mode characteristics.

It is therefore possible that Cooley's results could be explained by a

similar analysis if the effects of finite sample edges were included.

E. Weak Gradient Limit VBAex << I

When terms of order /B-ex can be neglected, combinations of

eigenvector-functions from adjacent principle eigenfunction indices may be

considered as a trial solution. Clearly the "exact" solutions of Section

IV.C are also valid in this limit when Bx - By. In addition, similar

solutions can be found when Bx * By if che fields are rederived taking

into consideration that ax * ay (this will destroy the symmetry and

elongate the mode patterns in the direction of the weakest gradient).

Since we are no longer restricted to eigenvector-functions belonging to

the same principle eigenfunction index, the diagrams shown in Figure 2.8

may now be considered. Notice that the diagrams shown in Figure 2.8(a) and
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hx  9/ay la/x h

00+ol10 +- 00

11 -10 , 12 01,21 I

2 0o3 " 1 02

(a)

00 0110 +- 001

I l1 ,21 ,21 4-11

20 *21 [10,30 4- 20

(b)

Figure 2.8. Curl diagrams for combinations of n - 0 and n - 2
eigenvector-funct ions.
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2.8(b) transform into one another under the interchange of x and y. Thus

the two solutions are equivalent under a rotation of iT/
2 about the z

axisl. It is sufficient, then, to consider the solution represented by

Figure 2.8(a).

Following a now familiar procedure, the fields corresponding to Figure

2.8(a) are found to be

mx-coo+ {[1 aiJy - 1!ll 2i2 (2. 104a)
a- ax  a

hy [=Lay a+ a O - Il 102)  (2.104b)
/7 - ax 2Z1a-J 4 a_

h- ia ~ 0  /2oo - a+C4 -l /21, (2.104c)

hy ico+ T a( 00 - T002 (.0d

ez , iwuoc°°+2(1+a+)aY 001 (2.104e)

and
Q2 = Zo(Zo + 1), (2.105)

where a c Zo - 9a. Spatial maps of the field strengths and polarizations

for this solution are shown in Figure 2.9.

In the weak gradient limit, all solutions near a given n have

approximately the same frequency which for large n is approximately

an2 - [ 2n/-' 7B,) + Zo][2nV -B'Xe + Zo + 11 (2.106)

Again, we find that the frequencies of the modes are so closely spaced that

they form a quasi-comtinuum.

!The diagrams do not explicitly indicate the signs of the quantities
involved. The actual transformation is x * y, y - -x.



0 0 t o 0 0 i .41
a 0 . 1- 0 0 - 1 )' I :

(a) (b
Q '"o0 0

--- ez < 0

-ez >0

(c)

Figure 2.9. Fields of the lowest order solution which does not possess
rotational symmetry about the z axis even when the bias field is symmetric.
The format is similar to that of Figure 2.6. (a) Magnitude and

polarization of m. (b) Magnitude and polarization of h. (c) Contour map
of ez.
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It should be possible to construct additional solutions in such a way

that the solution of this Section and the solutions of Section IV.C in the

limit '' << I are three of the lowest order solutions of a complete

orthogonal set.

V. Discussion

If exchange were neglected, the dispersion relation for k I H in an

infinite medium (or in a normally magnetized slab between conducting

plates) is simply a2 - Zo(Z o+l), independent of B. Hence in the virtual

surface theory (1,2), at the point in the material where the field and

frequency have this relationship all wavelengths are possible.

Qualitatively, this gives an idea of how a singularity in the field might

be possible at this point.

The addition of exchange, on the other hand, lifts this degeneracy and

results in a one-to-one correspondence between Q and 6, thus eliminating

the possibility of a singularity. In the case of a nonuniform field, the

resulting mode is oscillatory in regions of the sample where propagation is

permitted, and decays rapidly outside of these regions.

This suggests a mechanism whereby a gradient could localize a mode in a

thin slab with the conducting plates removed. As shown in Appendix A, the

effect of the new boundary conditions is to introduce a component of e x

power flow which, in most cases, dominates the power flow in the exchange

channel. Hence one can imagine a mode which again can propagate in some

regions and not in others, but whose propagation characteristics are

determined completely by the magnetostatic boundary conditions rather than
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exchange. This general concept of mode localization should not be limited

to volume waves, but should apply to other bias field orientations as well.

It is, in fact, the conceptual basis for the surface wave theory described

in Chapter Three.

Finally, two limitations of the present theory deserve mention:

1. In many cases (including that of Eshbach (30)) the magnetoelastic

crossover point occurs within frequencies of interest and cannot be

neglected. The present theory is strictly valid only where this is not the

case.

2. As pointed out in the introduction, these solutions lose their

validity if the turning point occurs near the edge of a finite

width/diameter film. In such a case, the second solution to the harmonic

oscillator equation (which does not vanish at infinity) must be included in

the eigenfunction expansion.

VI. Summary of Chapter

We have extended the mechod of expansion in normal spin wave modes

(17,18) to the case of a two-dimensional non-uniformly magnetized ferrite

with the effects of exchange included. Using this method, a number of

solutions (both exact and approximate) to the linearized magnetostatic

equations have been obtained.

A consideration of the special case of a one-dimensional linear bias

field profile and propagation parallel to the gradient showed that the

profile of the magnetization is given by an Airy function. The turning

point of the Airy function was shown to correspond to the location of a
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virtual surface in qualitative agreement with previous work by horgenthaler

(15). In addition, it was shown that the distance penetrated into the

gradient is roughly proportional to the frequency of the spin wave.

Next, spin wave propagation down a "trough" formed by a one-dimensional

parabolic bias field was considered. It was shown that solutions to the

magnetostatic problem can be constructed from basis vector-functions

consisting of the product of a polarization vector and a Hermite-Gaussian

function. In the weak gradient limit, /B-ex << 1, it was shown that the

wave can be locallized to a very narrow "trough" (as narrow as 15 um for

B = 12 cm- 2) when the frequency is very near the top of the volume wave

manifold. The net Poynting flux was found to be zero, however, indicating

that power can flow only through the exchange channel.

Finally, localized resonances confined by two-dimensional parabolic

bias field profiles were considered. In this case, basis vector-functions

consisting of the product of a polarization vector and a two-dimensional

Hermite-Gaussian function can be used to construct solutions to the

magnetostatic problem. A class of exact solutions (good for any strength

quadratic gradient) was found for the symmetric case Bx . By.

Both the frequencies and field distributions of the solutions are in

agreement with the spin wave continuum discussed and observed by Eshbach

(30).

These solutions, free of the singularities encountered in the virtual

surface theory, demonstrate that exchange can play an important role in the

localization of magnetostatic waves in nonuniform bias fields.
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Dispersion Relations for 11agnetostatic Waves in Thin Ferrite Films

1. Background

Magnetostatic waves in a ferrite slab with an in-plane magnetic field

were first discussed by Damon and Eshbach (54) in 1961, and waves in a

normally magnetized slab were first discussed by Damon and Van de Vaart

(55) in 1965. since these initial studies, various nodifications have been

made to the basic theories. Some of the most notable of these are:

1. Effects of a nearby parallel ground plane (56-59)

2. Effects of crystalline anisotropy (51,60-64)

3. Effects of finite slab width (38,44,65,66)

In the following sections we derive the general susceptibility tensor

including anisotropy and exchange and present the basic ecuations of

magnetostatics. We then derive the basic dispersion relations for the

three principle normal modes of an isolated, isotropic, infinite width

slab. Dispersion relations for ferrite-dielectric-metal and finite width

geometries are also given but without derivation.

"I. The General Susceptibility Tensor

The equation of motion for the magnetization is given by

Ie- ' Y Wo  x(H + "Ra +  Hex )  (A.1)
It



-133-

where y - - glel/2m is the gyromagnetic ratio, M is the magnetization, H is

the Maxwellian field, and Ha and Hex are effective fields due to anisotropy

and exchange, respectively. The effective fields are defined by

i awa
Ha - (A.2a)

Hex = Xex vZ4 (A.2b)

where Wa is the anisotropy energy density (Section III) and Xex is a

phenomenological constant equal to approximately 3(i0
- 12) cm2 for YIG.

Following the usual linearization procedure, these fields are divided

into static and time varying components as follows:

F + m (A.3a)

H - qo + (A.3b)

Ha Hoa + ha (A.3c)

Hex - Hoex + hex (A.3d)

The field Ho should understood to be the vector sum of the actual

externally applied magnetic field and the internal demagnetizing field, but

we will not explicitly indicate this in order to avoid further notational

complexity. :1aking these substitutions into (A.1) and assuming the time

variation exp(-iwt) gives
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- I iWM

Y110
+M x [o +[ia ++oex] + x [h+a +ex] (A.4)

The equilibrium direction of the magnetization is determined by the

e qua tion

Ro x [Ho(o) + Ha(Mo) + Hoex(7o)] . 0 (A.5)

where we have explicitly indicated the dependence of Ho, Hfa, and - ex on

40. The dependence of H on M results from the demagnetizing field

mentioned previously. Equation (A.5) represents a set of three coupled,

nonlinear, simultanious equations which are, in general, auite difficult to

solve. They have a rich family of solutions, however, including Bloch

walls and bubble domains.

At present we are primarily interested in single domain materials in

which case Hoex vanishes by (A.2b). If in addition, I1 0 1 >> Ial, we can

assume o 1 I Ho" This approximation is valid for many cases of interest,

but should be examined closely for lower microwave frequencies and strong

anisotropies.

Making the strong field approximation and neglecting terms second order

in small quantities enables us to write (A.4) in the form

Z " X e . r 72 + ;a.- + h - (Zo + Z,) (A.6)

wher we have introduced several new quantities:
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- I"- (A. 7a)

;a Na. (A. 7b)

Zo a Ho / MO  (A.7c)

Za - Hoa Z / Mo  (A. 7d)

32 32
,t 2 + 2 (A. 7e)ax 2 ay 2

and we have chosen the coordinate system so that the equilibrium

magnetization points along the z direction. The form of the small signal

anisotropy field is justified by noting that this field will only be

pr:sent if there is some deviation from the ewuilibrium direction of 71.

Keeping only the z component of Hoa is justified since the other components

give rise to an m.. which we neglect as a seconi order quantity.

Solving for h in (A.6) gives

h Aop " M (A.Sa)

where

+ a a

; Zo+Za xx - ex t in - Nxy
Ap= (A. 8b)

a a
i - N vX  Zo + Za - N yy _ ex7t 2

This operator (with anisotropy set to zero) is the starting point for the

exchange calcUlations of Chapter Two.
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If exchange is neglected, equation (A.8) can be easily inverted to

obtain the Polder susceptibility tensor

m h (A.9a)

where

a
X= (Zo + Za - Nyy)/D (A.9b)

a
Xxy = (-ia + Nxy)/D (A.9c)

a
Xyx (iQ + Nyx)/D (A.9d)

a
Xyy (Zo + Za - Nxx)/D (A.9e)

a a
D - (Zo + Za - Nyy)(Zo + Za -xx

a )_,+a
- (iQ + Ny,)(-i + Nxy) (A.9f)

Bajpai, et al. (63) have derived an expression analogous to (A.9) for

the permeability tensor (T + X) for an arbitrary orientation of the dc bias

field. Their result is incorrect, however, since their tensor is not

Hermitian (this is a requirement since their calculation does not include

loss).

If anisotropy is neglected, the susceptibily reduces to the familiar

form
- F x -iic]

I "(A.9g)

wnere z 1

2 2 Z 2 2
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II. The Effective Anisotropy Field (67)

We consider here the anisotropy in a cubic ferromagnet. Such a model

is appropriate for single crystal bulk YIG, but inevitably YIG thin films

also exhibit a stress-induced uniaxial anisotropy due to the slight lattice

mismatch between the YIG and GGG substrate. This mismatch can be

minimized, however, by doping with suitable nonmagnetic impurities (68).

For a cubic ferromagnet, the anisotropy energy density to lowest order

is given by

K

Wa , - [MI2 M
2 2 + M1

2" 3
2 + M2

2M3
2 ]  (A.10)

Mo 4

where the subscripts (1,2,3) refer to the principle crystal axes. The

effective anisotropy field is defined by

H a - - - -

M(M 2
2 + ",32)

2K2 4 M 2 (MI
2 + M3

2 ) (A.11)

M3(M1 2 + M2
2 )

separating the static and time varying components and keeping terms to

first order in m gives

0 1 1(0 2
2 + M0 3

2 )

2K
Ha - M0 2( 0 1 12 + %032) + Na m (A.12a)

I0 3 ( 0 1
2 + M022)
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whe re a 2K
Nii - o- (Mo2 - Moi (A.2b)

a 4 M -
(A. 12c)

Nij °°Mo o; (A2)

Again, these quantities are expressed in terms of the major cubic axes of

the crystal. In order to obtain the corresponding quantities in the xyz

system defined in terms of the direction of the applied magnetic field, we

use the transformation matrix 1:

Ha' = T •a (A.13a)

,a, T N a (A. 13b)

where

T 1 -cosO coso cos E - sino sin &

T21 = -sino cos& - cose coso sinE

T31 = sine cosb

T12 - cose sin cos& + coso sine

T22 - cosO cos - cose sino sinE (A.13c)

T3 2 - sine sino

T1 3 - - sine cos&

T23 - sin8 sin&

T33 = cose

ind 4,OF are the Euler angles relating the two coordinate systens.
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IV. Walker's Equation and Magnetostatics

Maxwell's equations in the magnetostatic limit are

Vxh 0 (A. 14a)

V • (m + h) -0 (A. 14b)

Using (A.9) and introducing a magnetostatic scalar potential allows us to

combine (A.14) into a single equation:

ai[Sij + Xij]aj* - 0 (A.15)

where h - - V, ai -- a/axi, and sums over repeated indices are implied.

Expanding this equation gives

{ax[(I+Xxx)ax + Xxyay] + ay[(1+Xyy)ay + Xyxax] + az2l* 0 (A.16)

If X is not a function of position this can be written

a

[(I+Xxx)ax 2 + (1+Xyy);y 2 + az 2 + a a y = 0 (A.17)D

a a
where we have used the fact that Nxy = Nyx  Note that the presence of the

cross term in (A.17) significantly complicates the solution of this

eauation. All of the correct existing calculations involving anisotropy of

which the author is aware have been done in selected coordinate systems

a
in which Nxy vanished. Unfortunately, there are many coordinate systems of

practical interest in which this is not the case.

Because of the computational difficulties involved with anisotropv we
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will not consider it further. In the absence of anisotropy, (A.17) reduces

to the Walker equation (69)

[(j+)(aX2 + ;y 2) + az2 - 0 (A.18)

This result, combined with the requirement that tangential h and normal

be continuous across all boundaries, completes the formulation of the

magnetostatic boundary value problem.

V. Dispersion Relations for Magnetostatic Waves in Ferrite Slabs

The following calculations neglect both exchange and anisotropy.

A. Surface Waves

Consider the geometry of Figure A.I. In air, Walker's equation reduces

to Laplace's equation so the potential in the three regions can be

expressed

-kx 4- i uky

4) - A e (A.19a)

B e= jB e kx ] eivky (A.19b)

kx + ivky

where v - ±1, and k is taken to be positive definite.

Continuity of tangential h requires the potential to be continuous

across the surfaces of the ferrite giving rise to the equations

-kd/2 -kd/2 kd/2
A eB e + C e (A.20)

-kd/2 kd!2 -kd/2
D e =B e + C e (A.21)



x
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AIR

Figure A.l. Surface and backward volume wave geometry.
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Similarly, continuity of normal b gives

-kd/2 kd/2 -kd/2 -kd/2 kd/2
- Ae - (I+x)(Ce - Be ) + vK(Be + Ce ) (A.22)

-kd/2 -kd/2 kd/2 kd/2 -kd/2
De - (I+x)(Ce - Be ) + vK(Be + Ce ) (A.23)

The dispersion relation is obtained by setting the determinant of the

coefficient matrix of the simultaneous homogeneous equations (A.20)-(A.23)

equal to zero. The result is

S2= Z(Z+I) + (1-e )/4 (A.24a)

I
or Iki " - tn[4Z(Z+i) - 4 Q

2 + 1] (A.24b)
2d

The absolute values emphasize the fact that although surface waves exhibit

field displacement nonreciprocity, the dispersion relation is reciprocal

for propagation in the t y directions. Equation (A.24) is plotted

qualitatively in Figure A.2.

B. Backward Volume Waves

The geometry for backward volume waves is also given by Figure A.1,

except that propagation is assumed along the t z directions rather than

along t y. Let us first consider even modes (ie., modes in which *(x) is

even). The potential in the three regions can be written

I -kx + i vkz
lb A e (A.25a)
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II i vkz
- B coskxx e (A.25b)

III kx + ivkz
, C e (A.25c)

Substituting (A.25b) into Walker's equation (A.18) gives the following

relationship between kx and k:

kx  (A.26)

The radical is real since 1+x < 0 in the volume wave manifold.

Requiring ip to be continuous at x , - d/2 gives

-kd /2
A e - B cos(kxd/ 2 ) (A.27)

-kd/2
C e - B cos(kxd/2) (A.28)

while the boundary condition on normal b gives

-kdl/2

-k A e - -B kx (I+x) sin(kxd/2) (A.29)

-kd/2k C e - B k(. I+x) sin(kxd/2) (A.30)

The dispersion relation can be obtained by combining either (A.27) and

(A.29) or (A.28) and (A.30). The result for even modes

cot(kxd/2) - - /-(,+ X) (A.31)

Jote that although there is only one surface wave node, there are a

multiplicity of backward volume wave modes given by the roots of (A.31).
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The odd modes can be obtained by assuming a new form for *II:

II ivkz
-B sin(kxx) e (A.32)

Repeating the above application of the boundary conditions gives

I
cot(kxd/2) - =_ (A.33)

V-(l+x)

A single compact equation containing both the even and odd modes can be

obtained by multiplying (A.31) and (A.33) and applying the identities

I + cosO
cot 29/2 I + cose (A.34a)1 - cose

I + cose
cote/2 (A.34b)

sine

The result is

2cot(kxd) - v-(I+ X) (A.35a)
v'-( l+x)

This is the form first given by Damon and Eshbach. Equations (A.31) and

(A.33) can be combined in an even simpler way, however, by using the

identity tan(9+w/2) a,-cotO. The result is

tan[(kxd + nir)/2] . - - ; n - 0,1,2, . (A.35b)

"-( +x)

21Iearlv for all even integers this is equivalent to (A.31) while for odd

1rUe 4ers it gives (A.33). The backward volume wave spectrum as given by

(\.35) is illustrated nualitatively in Figure A.3.
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(A)

k 'r/d

Figure A.2. Surface wave dispersion diagram

(A~)

ir/d k

Figure A.3. Backward volume wave mode dispersion diagram
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C. Forward Volume Waves

Forward volume waves propagate in a normally magnetized slab as

illustrated in Figure A.4. In the absence of anisotropy, the propagation

of forward volume waves is isotropic in the plane of the slab. We

therefore arbitrarily choose propagation in the t y directions.

For even modes, the potential in the three regions is of the form

I -kz + ivky
4- A e (A.36a)

I I i vky
0 B cos(kzz) e (A.36b)

III kz + luky
= C e (A.36c)

Requiring 4 to be continuous at z = z d/2 gives

-kd/2

A e - B cos(kzd/2) (A.37)

-kd/2
C e = 8 cos(kzd/2) (A.38)

and matching normal b at these boundaries gives

-kd /2
-kAe - -B kz sin(kzd/2) (A.39)

-kd/2
kCe = B kz sin(kzd/2) (A.40)

Combining either (A.37) and (A.39) or (A.38) and (A.40) gives the

dispersion relation for even modes

tan(kzd/2) _ (A.4i
/-( l+x)
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z

IHdc AIR

AIR

Figure A.4. Forward volume wave geometry.



where from Walker's equation

kz  . k -( x) .(A.42)

As before, the odd modes can be obtained by redefining pII:

*II - B sin(kzz) eivky (A.43)

The result is

I

-cot(kzd/2) * (A.44)

" -(l+X)

As in the backward volume wave case, the even and odd modes can be combined

in a single equation using tan(6+7r/2) -cote to obtain

tan [kzd/2 + nir/2 ] _. . .. (A.45)
't -(f+x)

The magnetostatic forward volume wave spectrum is illustrated in Figure

A.5.

D. Effects of an Adjacent Parallel Ground Plane

Some physical insight into the effects of placing metal in contact with

one face of a ferrite slab can be obtained through the use of the image

theorem. As illustrated in Figure A.6, magnetic dipoles parallel to a

lerfect electric conductor are imaged without inversion, whereas the images

)f dipoles normal to the surface are inverted (70).

In the case of forward volume waves, the rf magnetic dipoles are always

~, t to the ground plane and so they are imaged without inversion.

' ,.n( ,n nodes ire identical to the even nodes of a slab twice as thick
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Tr/dk

Figure A.5. Forward volume wave dispersion diagram.

Figure A.i lIagnetic dipoles imaged by a perfect electrical conduccor.



-1 5 C-

without a ground plane.

Reference to (A.24), (A.35) and (A.45) reveals that for a fixed

frequency, k a l/d for all three types of modes. Since the band edge at

k-O does not depend on d, this implies that thicker slabs sustain faster

modes. Hence the presence of a conducting plate increases the velocities

of forward volume waves.

In the case of surface waves and backward volume waves, the rf magnetic

dipoles have components both perpendicular and parallel to the metal

surface. As a result, the effect on the wave propagation is more complex

than simply doubling the thickness. However, the qualitative result that

the presence of the conducting plate increases mode velocities is still

correct.

The case of a metal surface placed a finite distance away from the slab

can be understood in terms of a transition between the limiting cases of a

conducting surface in contact with the slab, and the conducting surface

completely removed.

Due to the consequences of Laplace's equation, the magnitude of the

potential outside of the slab always decays as exp(-kL), where k is the

wavenumber and L is the distance along the slab normal1 . As a consequence,

for small k the metal will appear electrically as if it were in contact

with the slab, while for large k the mode will not be affected by the

metal. Intermediate values of k will be characterized by a smooth

transition between these two limits.

'The form of the decay away from the surface becomes more complicated if
the bias field is not uniform (see Chapter Three).



-151-

If d/L << I where L is the is the separation between the slab and the

metal, only waves with small k will be affected. The results are

illustrated qualitatively in Figure A.7. The actual dispersion relations

for the three modes are given below, with the corresponding geometries

illustrated in Figure A.8.

MSSW (57):

e2lkld = 1 i+(Qv+Z)(+tanh(-IkIL) ]

2(V+Z)+ l-(1Sv-Z)[1-tanh(-IkfL)]

where 4, eivlkIY ; v , ±1.

MSBVW (59):

[ Ikid 2+X(+e - 2 1k l L) (A.47)

where 4# c e i v l k l z ; v = ±1.

XSFVW (58):

-cot[ 4T<I+X) Ik I 1+x-+tanh( I k I L) (A.48)
,r(1+x)[tanh( IkIL)+1]

ivlklxi
where p a e v - -1, x i - (x,;).
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L finite
(a)
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I--Lfinite/

(b)

- L finite

(c)

Figure A.7. Qualitative propagation characteristics for ferrite-
dielectric-metal layered structure. (a) Dispersion relation for forward
waves. (b) Delay characteristic for forward waves. (c) Delay
characteristics for backward waves.
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z

MSFVW

/y

Y

z

x Hdc
MSSW & MSBVW

Figure A.8. Geometry and coordinate systerms for ferrite-dielectric-metal
layered structure.
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E. Effects of Finite Slab Width

Generally speaking, introducing a finite width to the ferrite slab has

the effect of adding a transverse component to the total k vector. In

other words, we view the mode as consisting of a plane wave propagating at

an oblique angle and bouncing back and forth down the slab.

As in Section V.D, the forward volume waves are again easier to

understand. In the present case this is because the propagation is

isotropic in the plane of the slab. Hence the frequency depends on the

transverse component of k (kt) in exactly the same way as the longitudinal

component (ky). The transverse component is quantized and held relatively

constant by the boundary conditions while the longitudinal component

depends strongly on frequency. Hence kt is negligible when k£ is large,

but kt dominates for kg - 0.

The various quantized values of kt give rise to an infinite number of

modes which, when combined with the various modes corresponding to

thickness variations, comprise a mode family entirely analogous to the

modes of a rectangular metallic electromagnetic waveguide.

The effect on surface waves is more complicated, however, since

propagation in the plane is not isotropic. As a result, when kt is small

and kt dominates, the wave has a volume wave character, whereas when k2

dominates the surface wave character is restored. Hence the finite width

induces a volume wave band near the band edge where ki - 0.

To the author's knowledge, no calculation of the width effects on

backward volume waves has been done to date. However, it seems very likely
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that a similar argument to the above could be made in favor of the

existence of width-induced surface waves near the low-k band edge. It

would be expected that these surface waves should show backward wave

character.

For d/w << 1, where w is the slab width, only the spectrum near k£+O

will be affected. The qualitative propagation behavior for surface and

forward volume waves for this case is illustrated in Figure A.9. The

presence of a ground plane such that d/L << I is also assumed. The

dispersion relations for these cases are given below. It should be noted

that both of these results are based on the somewhat artificial assumption

of spin-pinning at the edges of the sample (44,65); the electromagnetic

boundary conditions at the edges have not been rigorously satisfied. An

integral equation formulation which rigorously satisfies these edge

boundary conditions has been described by Morgenthaler (38,66).

Unfortunately, the solution to the integral equation is not available in

closed form.

HSSW (44) (width-induced volume waves excluded):

2Md ZM4+f kI+(Z 2-2)(MN)
e

ZM-Qvlk1+(Z 
2_g2)(M+N)

ZM-S2vIk1+(Z 2-nQ2)[M-Ntanh(NL) 4
X (A.49)
ZM+flv4k1+(Z 2-g2) [M+Ntanh(NL)]

where M 2 - 1mT/w] 2 /(I+x) + k 2 , N2 . [n1/wJ 2 + k 2
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Figure A.9. Finite width effects on surface and forward volume wave

propagation. A ground plane such that d/L <<l is also included.
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and e~ ivikly ; v-±.

MSFVW (65):

co~td l2- a 1
2tanh(a1L) (A.50)

coctd f ctf [ tanh( a1 L)+I

where -f -(1+X) [kZ+(nwr/w)21 , LI k2 + (nlr/w) 2

and 4' ivlkly ; v =±1.
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APPENDIX B

Harmonic Oscillator Mathematics

A. One-dimensional Harmonic Oscillator

1. The equation for a one-dimensional quantum mechanical harmonic

oscillator can be written

; 2 0(x) + {2c - X 2 ]0(x) = 0

where a is a characteristic length defined in the context of a particular

problem. In natural or normalized units the equation assumes the form

a2o(_ ) + (2c - E2) ( ) - 0 (B.2)

where E =x/a.

2. The eigenfunctions of (B.1) which vanish at infinity are given

by the Herrite-Gaussian functions

-x 2 /2a 2

Hn(x/a) e
49x) ( (B.3)

where Hn( ) is the nth order Hermite polynomial (see (B.9)). The

corresponding solutions to (8.2) are given by

- 2/2

(2n ! j = (B.4)
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The eigenvalues belonging to either eigenfunction are

e - n + 1/2 , n = 0,1,2, . . . (B.5)

3. Hermite polynomials are solutions to the equation

d2 _ - -+dH 0 (B.6)
d&

4. The Hermite polynomials can be expressed

S[dn e-s22sj (B.7)" e- ]s-O

where

-s 2 +2s

F(s, ) - e (B.8)

is the generating function for Hermite polynomials. The first few Hermite

polynomials are

HO(&)- 1 i3()= -12+8Q 3

Hl(&)- 2t, Ha(F,)- 12-48&2+16 & (B.9)

H2 (O' -2+4&2 H{5( )- 120E-1603+32 5

5. Useful recurrence relations for Hermite polynomials are

dHn - 2nHn- I  (B. 10a)

d(

Hn [= 'V} - /nHn- ! B. 1 Ob)
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6. The orthogonality integral for Hermite polynomials is

SHm(Hn(&)e - &2d & - Smn Zn n!/n (B.lI)
-90

7. The orthonormality of the Hermire-Gaussian functions (B.3) and

(B.4) can be easily demonstrated using (B.11):

0, -
a

f d& ()( ) = f dx 4n(x) m(x) - Smn (B.12)
CD -a

8. The derivative of the Hermite-Gaussian O(x) can be obtained

using (8.3) and (B.10):

(X)d . 1[On- I - n+ n+.13)

dx a [22 V ]

9. A measure of the spatial extent of the functions 0,(x) is given

by the location of the turning point of equation (B.I) defined as

2E - xtp 2 /a 2 
= 0 (B.14a)

Combining this with (B.5) gives

Xtp = a 2n+1 (B.14b)

B. Two-dimension Harmonic Oscillator

1. The equation of a two-dimensional quantum mechanical harmonic

oscillator is

i-220 + a 2 2 + (2E - x 2  - V2  )p 0 (3.15)

x2 32 -2 -2
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Assuming a product function for 4, this separates into two one-dimensional

harmonic oscillator equations

a xb + [ FA- x2  -~ (B.1I6a)

-3 [2c - a0(B. 16b)

where c - ex + Y"

In the case of eauation (2.80)(Chapter Two), we have

2e x  + 2ey - (a + Qa - Zo)/Xex (B.16c)

where X = (ye/BX) 11 and ay X (ex/By)'11.

2. The eigenfunctions of (3.15) which vanish at infinity are

simply products of one-dimensional Hermite-Gaussians as indicated by

(3.16). We have

On n(x,y) - On (X)On (Y) (B.17)
x y x y

where n i(xi) is given by (B.3).

3. The orthonormality of the functions On n is easily
x y

demonstrated using (3.17) and (B.1I). The result is

Go a

f dx f dy On n *m m 6 n ,m 6n n(B.18)
-x y x y V x V
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n
C. Properties of the Generalized Functions 0.(z)

1. For the analysis of Chapter Three, it is convenient to introduce

the generalized one-dimensional Hermite-Gaussian function:

-z 2 /2an2

n Hm(z/%) e
M(z) -(B.19)

(an 2 m m! /w )1/2

These functions represent the set of m solutions to n different harmonic

oscillator problems.

n
The functions On(z) are shown in Chapter Three to be solutions of the

equation

3 n n

24n(z) + (A-Bz 2 )A2 n(z) = 0 (B.20)

where A2 = B(2n+L) 2 /A 2 , and an n A
(2n+1)

n
2. The functions 41 (z) are not, in general, orthogonal:

fdz Om(z)q(z) * 0 (B.21)

This is simply because for n * r the functions are solutions to different

harmonic oscillator problems. It follows that functions having the same

characteristic lengths (ie., n-r) are orthonorral:

n nfdz ( (z)(oq(z) - 6,q (9.22)
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n

3. The derivative of om(z) is given by

n n n
I (B.23)

n
4. The quantity z2 On(z) is needed for the integral equation theory

of Chapter Three. This quantity can be expressed in terms of the second

n
derivative of On by use of the differential equation (B.20a). The result

is
n n n

z20n , an432n + AOn (B.24)

The second derivative can be obtained by differentiating (B.23). This

gives

n n n n
a In, n(n-1) On-2 - (2n+L) On + /(n+l)(n+2) *n+2 (3.25)

az 2 %n z 2 an" 2c z

Substituting (B.25) and (B.20c) into (B.24) gives the final result

n n n n
Zzon , An(n-L) n-2 + A On + A/(n+1)(n+2) On+2 (B.26)

2B(2n+l) 2B 2B(2n+l)

n
5. The Fourier Transform of 0m(z) is defined as

n -itz n
om(C) dz e OM(z) (a.27)

It is computationally convenient to define the normalized variables Li, rL

and =z/ctn. MIaking these substitutions and (ising (8.19) gives
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Control of the Frequency of Energy Circulation of
Magnetostatic Modes in a Sphere

The SM thesis of Mr. Daniel A. Fishman, now nearing completion, is concerned

with the control of frequency at which magnetostatic mode energy circulates in

a YIG sphere; the uniform precession is of particular interest.

A portion of the thesis proposal is given below:

The use of ferrimagnetic materials, particularly YIG spheres, in microwave

magnetically tunable filters is widespread. In general these devices have good

power handling characteristics. It is proposed that this is due, in part, to

the fast velocity of energy circulation of the modes, (analogous to the group

velocity for planes waves), and that this works to prevent low power limiting.

However, it has been shown by Morgenthaler that this velocity can be altered by

changing the specific electromagnetic boundary conditions. The situation where

this boundary condition is of the form of a concentric conducting spherical shell,

is studied theoretically and approximated experimentally. The theoretical

analysis indicates that there is a critical ratio, between the radius of the YIG

sample and that of the conducting spherical cavity, where the velocity will become

zero. These calculations did not include the electromagnetic losses that arise

in the experimental situation, thus the velocity approaches zero at this ratio.

In addition to the effect of the energy velocity upon signal delay times, there

is the effect of decreasing the critical power threshold for nonlinear effects.

The onset of instabilities in the uniform precession of the magnetization is due

to a level of rf energy density inside the sample which exceeds a certain critical

value. A decrease in energy velocity could be expected to decrease the amount of

incident power required to obtain this critical energy density.

The object of this work is to observe the predicted effects the velocity of

energy circulation may have on the inset of spin wave instabilities and other

nonlinear effects.
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